
CL-Arrows for Emacs

This is a port of CL-Arrows to emacs lisp. The only real changes were using lexical bind-
ing and changing the test suite to ERT and adjusting the tests for the fact that emacs lisp
doesn’t have fractions.

Implements the -> and ->> threading macros in Clojure, as well as -<> and -<>> from
the swiss-arrows library.

Documentation

[macro]
-> initial-form &rest forms => results

Inserts INITIAL-FORM as first argument into the first of FORMS, the result into the next,
etc., before evaluation. FORMS are treated as list designators.

[macro]
->> initial-form &rest forms => results

Like ->, but the forms are inserted as last argument instead of first.

[macro]
-<> initial-form &rest forms => results

Like ->, but if a form in FORMS has one or more symbols named <> as top-level ele-
ment, each such symbol is substituted by the primary result of the form accumulated so
far, instead of it being inserted as first argument. Also known as diamond wand.

[macro]
-<>> initial-form &rest forms => results

Like -<>, but if a form in FORMS has no symbols named <> as top-level element, inser-
tion is done like in ->>. Also known as diamond spear.

Examples

(-> 3

/) ; insert into designated list (/)

=> 1/3

(-> 3

(expt 2)) ; insert as first argument

=> 9

(->> 3

(expt 2)) ; insert as last argument

=> 8

(-<>> (list 1 2 3)

(remove-if #'oddp <> :count 1 :from-end t) ; substitute <>

(reduce #'+) ; insert last

/) ; list designator

=> 1/3

(let ((x 3))

1

https://github.com/nightfly19/cl-arrows
https://github.com/rplevy/swiss-arrows


(-<> (incf x) ; (let ((r (incf x)))

(+ <> <>))) ; (+ r r))

=> 8

Todo

Future versions might include further ideas from rplevy’s swiss-arrows.

2

https://github.com/rplevy/swiss-arrows

	CL-Arrows for Emacs
	Documentation
	Examples
	Todo


