
 ____ __ _ _____ _
/ ___| ___ / _| |___ ____ _ _ __ ___ |_ _|__ ___ | |___
___ \ / _ \| |_| __\ \ /\ / / _‘ | ’__/ _ \ | |/ _ \ / _ \| / __|
 ___) | (_) | _| |_ \ V V / (_| | | | __/ | | (_) | (_) | __ \
|____/ ___/|_| __| _/_/ __,_|_| ___| |_|___/ ___/|_|___/

 __ __ _
| \/ | __ _ _ __ _ _ __ _| |___
| |\/| |/ _‘ | ’_ \| | | |/ _‘ | / __|
| | | | (_| | | | | |_| | (_| | __ \
|_| |_|__,_|_| |_|__,_|__,_|_|___/

1

 ____ _ __ __ _
_ \ ___ __ _ __		\/	___ ___ __ _ _ __ __											
	_) / _ \/ _‘	/ _‘		\/		/ _ \/ __	/ _‘	’_ \ / _‘						
_ < __/ (_		(_					__/__ \	(_					(_	
_	____	__,_	__,_	_		_	___		___/ __,_	_		_	__,_	

 ____ _ _ _ _
| _ \ ___| | ___ __ _ ___ ___ | \ | | ___ | |_ ___ ___
| |_) / _ \ |/ _ \/ _‘ / __|/ _ \ | \| |/ _ \| __/ _ \/ __|
| _ < __/ | __/ (_| __ \ __/ | |\ | (_) | || __/__ \
|_| ____|_|___|__,_|___/___| |_| _|___/ _____||___/

Editor’s note:

I had a little trouble building the tools. Here’s how I got out of it:

The release notes tell you to create st_bin, set your default there,
and copy all of the files in [.distn] on the distribution kit to st_bin.
They don’t tell you that the build procedure expects the files from
[.src] and [.vms] on the distribution to be copied to [-.src] and [-.vms].

You can put your st_tmp (˜tmp) directory on any device you like, except
when doing a toolgen. Toolgen renames files between st_bin and st_tmp,
so they have to be on the same physical device. After doing a toolgen,
you can reassign st_tmp to wherever you want it to be.

The toolgen procedure does an @fbuild, which builds a few tools that the
tools use to build themselves. It assumes that they are all defined
as VMS foreign commands. I added the command definitions to fbuild.com.

Some system-wide logical names are defined in stlognam.com, which you
should edit for your system. The sharable image’s name RLIBSHARE was
assigned /exec but not /system. I added the /system to stlognam.com.

2

 Spring 1986 DECUS Distribution

The following steps must be performed to build the Spring 1986
release of the Software Tools package for VMS.

 1. Edit the file stlognam.com in this distribution directory to
 reflect the disk and directories used by the tools. All of the
 tools logical names start with the string "st_", in an attempt to
 avoid conflicts with all other software. The definition for
 st_node should be replaced with your node name, and st_timezone
 should be replaced with the appropriate three character
 mnemonic. Do not worry, the software which uses the logical name
 worries about whether it is daylight-savings time or not, so you
 won’t have to worry about changing the logical name each April
 and October.

 2. Invoke the modified stlognam.com to set up the environment

 3. Create the six known directories (˜bin, ˜usr, ˜tmp, ˜lpr, ˜msg
 and ˜man) with the appropriate protection, and set default to
 st_bin. Consult release.doc for information on the required
 protection modes for the directories.

 4. Copy the Distn directory files into the current directory, after
 deleting all files currently in the directory. Make sure that
 the account under which you are running has the following quotas:

 PRCLM 10
 BYTLM 30000
 FILLM 75
 TQELM 40
 PGFLQUOTA 16384

 5. @toolgen
 This command file assembles all macro primitives, compiles all
 fortran primitives, builds two tools to bootstrap ourselves, and
 then proceeds to build the 115 utilities in the package. This
 takes a few hours, so take a break. If you answer yes to any of
 the questions concerning file deletion, toolgen will delete
 unneeded files as the processing progresses. If you delete the
 object files, a savings of ˜2000 disk blocks ensues. If you
 delete the source files as you progress, a savings of ˜3700
 blocks accrues. If a shared global image is NOT selected, the
 entire system occupies ˜22000 blocks if no files are deleted, or
 ˜16000 blocks if both sources and objects are deleted during the
 build. On the other hand, by building with the shared global
 image, the corresponding numbers are ˜12000 and ˜6000,
 respectively.

 6. Now modify the system startup files to setup the new logical
 names and installed images for the next boot.

 -1-

3

 Spring 1986 DECUS Distribution

 7. Install the known images using st_bin:tools.ins

 8. The required quotas have not changed with this release, so no
 mucking with the authorization file will be necessary, unless
 this is your first tools release. If this is the case, consult
 the file release.doc in the distn directory.

 9. To build the appropriate mail system utilities, you need to
 consult the file msgreadme.1st in the msgsys directory; follow
 the directions there.

10. You should now be operational.

 Software Tools
Users Group 140 Center Street El Segundo, CA 90245

(213) 322-2574

 -2-

4

 Release Notes

 VAX/VMS Software Tools VOS

 Spring 1986 DECUS Distribution

 David Martin
 Hughes Aircraft
 P.O. Box 92426 R1/B206
 Los Angeles, CA 90009

This document describes the VMS implementation of the Software Tools
Virtual Operating System. For those new to this game, the basic
principles behind the software are described in the article "A
Virtual Operating System" which appeared in the September 1980 issue
of the Communications of the ACM. The contents of this release
supercede all previous releases.

See the file ‘‘changes.s86’’ for a list of changes since the last
(s84) release.

 NOTICE

This software is provided on an as-is basis. No guarantee of
performance or support is stated or implied. Any errors or omissions
in the code or documentation are regrettable, but not unusual
considering the man-power and mode of distribution. Written
notification of bugs WITH fixes are appreciated and will be
incorporated into the next release, if possible.

 -1-

5

 Release Notes

 Currently available tools

 Acat - concatenate nested archive entries on standard output
 Addr - generate the msg address database
 Admin - administer TCS file.
 Alist - generate paginated listing of source archive
 Ar - archive file maintainer
 Args - use standard input as arguments for command
 Asam - generate index for archive file
 Asplit - salvage garbaged archive files
 Axref - cross reference symbols in archive files
 Banner - generate large banner lines
 BarGraph - draw a 0-100% bargraph of integer data
 Box - draw boxes around block structure of RatFor or C programs
 Cat - concatenate and print text files
 Ccnt - character count
 Cd - change (current) directory
 Ch - make changes in text files
 Chmod - change mode (protection codes) of file
 Chown - change the ownership of file(s).
 Cmp - compare two files
 Comm - print lines common to two files
 Cron - clock deamon
 Cp - copy files
 Cpress - compress input files
 Crt - copy files to terminal a screen at a time
 Crypt - crypt and decrypt standard input
 D - list contents of directory
 Date - print the date
 Dc - desk calculator
 Delta - make an TCS delta
 Detab - convert tabs to spaces
 Diff - isolate differences between files
 E - extended version of "ed" with command editing & history
 Echo - echo command line arguments
 Ed - line-oriented text editor
 Entab - convert spaces to tabs and spaces
 Esh - extended shell, with intraline editing and history
 Exist - check for the existence of a file
 Expand - uncompress input files
 Fb - search blocks of lines for text patterns
 Fc - fortran compiler
 Fd - fast directory list in sort order
 Field - manipulate fields of data
 Find - search a file for text patterns
 Form - produce form letter by prompting user for information
 Format - format (roff) text
 Get - get generation from TCS file
 Grep - search file[s] for a pattern

 -2-

6

 Release Notes

 Hsh - shell with history and editing functions
 Incl - expand included files
 Intro - list on-line documentation
 Isam - generate index for pseudo-indexed-sequential access
 Kill - kill a running process
 Kwic - make keyword in context index
 Lam - laminate files
 Lcnt - line count
 Ld - loader
 Ll - print line lengths
 Lpr - queue file to printer
 Ls - list contents of directory
 Macro - process macro definitions
 Man - run off section of users manual
 Mcol - multicolumn formatting
 MkDir - create directories
 Mv - move (or rename) a file
 Number - number lines
 Os - convert backspaces into multiple lines for "printers"
 Pack - pack words into columns
 Pl - print specified lines/pages in a file
 Pr - paginate files to standard output
 Printf - justify fields of data in fixed-width fields
 Prlabl - format labels for printing
 Ps - list process status information
 Pstat - determine status of process
 Pwd - print working directory name on standard output
 Rar - rearrange archive
 Ratfor - RatFor preprocessor
 Rc - RatFor compiler
 Resume - resume a suspended process
 Rev - reverse lines
 Rm - remove files
 Ruler - display ruler on terminal screen
 Sched - a way to repetitively invoke a command
 Sedit - stream editor
 Send - send a message to another user’s terminal
 Sepfor - Split FORTRAN programs into multiple files
 Sh - shell (command line interpreter)
 Sleep - cause process to suspend itself for a period of time
 Sort - sort and/or merge text files
 Spell - find spelling errors
 Split - split a file into pieces
 Suspnd - suspend a running process
 Tail - print last lines of a file
 Tee - copy input to standard output and named files
 Timer - time execution of a process
 Tr - transliterate characters
 Tsort - topologically sort symbols
 Ttt - 3-dimensional tic tac toe

 -3-

7

 Release Notes

 Txtrpl - perform generalized text replacement
 Ul - convert backspaces into multiple lines for "terminals"
 Uniq - strip adjacent repeated lines from a file
 Unrot - unrotate lines rotated by kwic
 Wc - count lines, words, and characters in files
 Wcnt - (character) word count
 Whereis - locate file in tree based on partial pathname
 Who - show who is on the system
 Xch - extended change utility
 Xfind - entended find utility
 Xref - make a cross reference of symbols

 Formerly released mail utilities

 Mail - utility for sending mail to local users
 Msg - utility for manipulating message files
 Msplit - utility for salvaging message files
 Postmn - report the presence of mail
 Resolve - resolve mail system user names
 Sndmsg - utility for sending mail to other users
 Users - list valid mail users

 SIG Tape Information on the Distribution

These tools are normally distributed on the SIG Tape as a BACKUP
container with the name SWTOOLS.BCK The directories in the container
file have the following significance:

 [...DISTN] All of the files necessary to build this release of the
 Tools on VMS. Note that it is now necessary for you to
 build the images from the source files in this
 directory. Images and objects are NO LONGER
 distributed. The system has successfully built on all
 versions of VMS >= 3.0.

[...MSGSYS] The distribution of the Software Tools Distributed Mail
 System.

[...OLDMSG] The TCS archives for the previously released mail
 utilities.

 [...SRC] The source for the portable VOS utilities.

 [...VMS] The source files for the VMS-specific tools and primitive
 functions.

 -4-

8

 Release Notes

 On Disk Structure of the Tools VOS

The tools system uses 6 directories which may be scattered over one
or more of your disks, with an optional seventh directory at the
discretion of the site management. Each known directory is defined
as a system logical name; each logical name is of the form
ddnn:[dir...] - i.e. a device AND directory specification.

st_bin This defines ‘˜bin’, the directory in which the distributed
 images are built and kept. This directory should have the
 protection [rwe,rwe,re,re].

st_usr Site-specific tools, scripts and other known files should be
 kept here (˜usr). The protection should be [rwe,rwe,re,re].

st_tmp The scratch files created by the tools are kept here (˜tmp).
 As such, the directory must have the protection
 [rwe,rwe,rwe,rwe]. In addition, all users of the tools must
 have a quota on the disk which st_tmp points to, if quotas are
 enabled on that disk.

st_lpr The files formatted by the ‘lpr’ tool which are queued to the
 print symbiont are kept here (˜lpr). The protections and
 quota considerations are the same as for ˜tmp.

st_msg The known files for the mail system are kept here (˜msg). The
 protection should be [rwe,rwe,re,re].

st_man The archives and indices used by the ‘man’ and ‘intro’
 utilities are kept here (˜man). The protection should be
 [rwe,rwe,re,re].

st_src (Optional) The source files for the tools modified locally
 should be placed here (˜src).

In addition, the VOS requires two other system logical names to run:

 st_node - the name of your node in a network; if you are not a
 member of a net, pick one that appeals to you.

 st_timezone - the three character mnemonic for the timezone in
 which the machine is situated. Only the first character is used,
 as routines exist in the library to determine the state of
 standard/daylight time.

 -5-

9

 Release Notes

Two other logical names can be defined at the discretion of site
management:

 sys_tools - This should be defined as the same value as st_bin. It
 is only for compatibility with previous releases.

 st_new_versions - If this is defined to be the value "YES", then
 the tools will create a new version of a file when writing a file.
 This feature has just been added, so there may be some
 complications with its use. The logical name can be defined in any
 of the three name tables and have the desired effect. As such, it
 is an individual option to define it at LBL.

 -6-

10

 Release Notes

 Runtime requirements

The system logical names described above.

The file st_bin:tooldef.com defines the tools as foreign symbols so
that they can be invoked from DCL. Invocation of the command file
from a system login file guarantees the symbol definitions for the
tools for all users when they log in. Alternatively, interested
users may invoke @st_bin:tooldef in their individual login.com
files.

Several of the images need to be installed with enhanced privilege to
provide full functionality to all users. They are:

* ps (GROUP,WORLD) - lists valuable information on processes in the
 system.

* who (GROUP,WORLD) - lists who is logged into the system, and other
 info.

* send (OPER) - inter-terminal write facility that is not specific to
 any particular type of terminal.

* sh (DETACH,CMEXEC) - the DETACH privilege is required by the shell
 to permit the user to spawn background processes. If this feature
 is not supported locally, then do not install with the privilege.
 The CMEXEC privilege permits the shell to redefine the process
 logical name SYS$DISK at supervisor mode when performing a ‘cd’
 command, such that the device assignment remains when leaving the
 shell. This is done by changing mode to EXEC, redefining the
 logical name at supervisor mode, and returning to USER mode.

* esh (DETACH,CMEXEC) - same as for sh.

* hsh (DETACH,CMEXEC) - same as for sh.

In addition, if ‘ed’ or ‘e’ are heavily used on your system, it is
suggested that they be installed /SHARED/OPEN/HEADER_RESIDENT.

In the same vein, if the tools have been built with the shared global
image, RLIBSHARE.EXE, it should be installed /SHARED/OPEN to
facilitate global sharing of the tools runtime library. On V4.x
systems, this name should be defined in EXEC mode. If you have
problems with the tools or installed images, then try this: (1) Move
a copy of RLIBSHARE.EXE from ˜bin to the VMS directory SYS$SHARE.
(2) Change the install procedure for the tools so that RLIBSHARE is
installed from SYS$SHARE rather than ST_BIN:.

The file st_bin:tools.ins is a DCL command file which causes the
above eight images to be installed with the above privileges, and can

 -7-

11

 Release Notes

be invoked during system startup. The file st_bin:tools.rem may be
used to deinstall these images during update. For V3.x and earlier
systems, these files are named toolsv3.ins and toolsv3.rem
respectively.

 -8-

12

 Release Notes

While the system is being built during TOOLGEN, the file
st_bin:sysuaf.mod is generated, which is a DCL command file to cause
authorize to modify all accounts on your system to reflect the
suggested quota values to effectively use the tools. The suggested
values are:

 PRCLM 10
 BYTLM 30000
 FILLM 75
 TQELM 40
 PGFLQUOTA 16384

These values typically permit a user to have up to 5 processes active
on his behalf. The most common problem incurred if the quotas are
insufficient is the error message

 "Cannot spawn process"

when attempting to invoke images from one of the shells. It is a
good idea to peruse sysuaf.mod and remove accounts from it which do
not need to be modified.

 -9-

13

 Release Notes

 Source File Structure

The source code for ‘tool’ is contained in a file [...SRC]tool.tcs
(if the tool is portable across operating systems) or
[...VMS]tool.tcs (if it is an VMS-specific tool). This TCS source
file contains an edit history of all changes made to the source. The
output of the ‘get’ utility operating on a ‘.tcs’ file results in a
file (tool.w) which is all of the environment necessary to rebuild
the tool, provided that the VOS is operational. The tool.w file is
an archive containing:

 1. All of the files "included" by the ratfor source code.
 2. The ratfor source file, tool.r.
 3. The format input for the manual entry, tool.fmt.
 4. And optionally, any extra definition files needed to build
 alternate versions of the tool (eg. sh => hsh).

As an example, suppose that you wish to change the subroutine
"module" in "tool". The suggested scenario is as follows:

 $!Fetch the file tool.tcs from the appropriate directory in the container
 $!file on tape into st_src
 $ hsh
 % get ˜src/tool.tcs tool.w
 % ar xv tool.w
 % ar xv tool.r module
 % ed module
 (make changes and write file)
 % ar uv tool.r module
 % rc -v tool.r
 % (test out new tool. repeat last three steps until satisfied.)
 % ed tool.fmt
 (modify writeup to reflect changes)
 % ar uv tool.w tool.r tool.fmt
 % cp tool.exe ˜usr/tool.exe
 % delta tool.w ˜src/tool.tcs
 (Identify in the comments the reason for the changes,
 and which modules changed.)
 % format tool.fmt >tool
 % ar uv ˜man/s1 tool
 % asam <˜man/s1 | sort >˜man/i1

Placing tool.exe in ˜usr causes the shell to find your modified
version of "tool" rather than the distributed one. The last two
commands above cause the manual entry for ‘tool’ to correctly
correspond to the utility itself.

 -10-

14

 Release Notes

 Source for Primitive and Library Functions

The source archive for the primitive and library functions may be
found on [...VMS]rlib.w. This archive consists of several modules:

1. prim.m - an archive of macro files which are written in assembler
 and used by one or more tools. These routines are VMS-specific.

2. lib.m - assembler versions of portable ratfor routines which are
 used by one or more tools.

3. prim.r - archive of ratfor source routines which are VMS-specific
 and used by one or more tools.

4. lib.r - an archive of ratfor archives of portable library
 routines.

5. other files included by ratfor when processing prim.r.

To assemble any of the modules in prim.m or lib.m, it is necessary to
extract the module(s) and assemble them individually

% ar xv prim.m directory.mar; mac/nolist directory

To modify one of the routines in prim.r, simply extract it using the
archiver, edit it up, update the archive, and recompile via

% ar xv prim.r dscbld; ed dscbld; ar uv prim.r dscbld
% rc -cv prim.r

To modify one of the routines in lib.r, it is necessary to perform
two extractions and two updates, as in

% ar xv lib.r arsubs.r
% ar xv arsubs.r aopen
% ed aopen
% ar uv arsubs.r aopen
% rc -cv arsubs.r
% ar uv lib.r arsubs.r

Of course, after generating new object modules for modified routines,
it is necessary to make a system-specific version of st_bin:rlib.olb
in st_usr, and to replace the object module in st_usr:rlib.olb. It
is also a good idea to avoid replacing the modified modules in the
archives until you are sure that they work. Writeups on all
primitive routines which are to be visible to programmers may be
found using the ‘man’ command on section 2 of the manual. Writeups
for library routines are in section 3.

 -11-

15

 Release Notes

 Manual entry structure

In order to simplify the generation of manual entries for utilities
and functions, a set of ‘format’ macros are defined in the file
‘˜bin/manhdr’. For the correct working of the ‘intro’ utility, it is
necessary that the first three lines of any site-dependent writeups
consist of

.so ˜bin/manhdr

.hd <name> (<section>) (<date>)
one line description of the tool or function

where <name> is replaced by the name of the function or tool,
<section> is the section of the manual this entry is for and <date>
is the date the document was created. The .hd macro guarantees that
the margins are correct, the header line on the manual pages is
consistent with the software tools standard, and that

NAME
 name - one line description of the tool or function

appears in the writeup. This particular landmark is used by the
intro utility to list the one-liners for the known entries in each
section. The best method is to peruse the macros in ˜bin/manhdr and
to look at some of the writeups supplied with the system.

 -12-

16

 Release Notes

 Legal file specifications for the tools

The following lists legal VMS file specs for the tools and valid
tools pathname equivalents:

DEC format Path format
------------------------------- -----------------------------------
file.typ.ver file.typ.ver
[dir]file.typ.ver /dir/file.typ.ver
[dir.sub...]file.typ.ver /dir/sub/.../file.typ.ver
[.sub]file.typ.ver sub/file.typ.ver
[-.sub]file.typ.ver \sub/file.typ.ver
ddnn:[dir]file.typ.ver /ddnn/dir/file.typ.ver
host::ddnn:[dir]file.typ.verp /@host/ddnn/dir/file.typ.ver
? ˜name/file.typ.ver
? ˜/file.typ.ver

In all cases, the pathname equivalent consists of replacing the many
and varied VMS delimiters by slashes, which is typically a lower-case
character on all terminals and is normally easy to strike using the
right pinky. In addition, the backslash (\) is used to go up in the
directory tree, equivalent to DEC’s [-] construct. The ˜name
capability is available for the seven known directories of the tools
system, ˜bin, ˜usr, ˜tmp, ˜lpr, ˜msg, ˜man and ˜src. They permit one
to write portable scripts for utilities across different operating
systems. Also, ˜user, where ‘user’ is the login name of a user on
the system maps onto that user’s home directory.

The ˜/ is shorthand for the user’s home directory.

In utilities which manipulate directories, all of the above formats
are valid when the file.typ.ver trailer is removed.

 -13-

17

 Release Notes

 Changes for the Spring 1986 Release

 Modified Utilities

* ‘addr’ has been modified to reflect V4 changes in the SYSUAF.DAT
 file. The code has also been conditionalized for V3.x or V4.x with
 the addition of VMSV3 in ratdef. The correct ratdef is selected
 during the toolgen process.

* ‘banner’ now includes the big character file.

* ‘ps’ has been modified to reflect changes made in valid directory
 names (with multiple] and [allowed). The Term field has also
 been widened for the display of longer terminal device names (such
 as virtual terminals).

* ‘sh’ has been modified many times to remove bugs and add features.
 Refer to changes.86 for more specific information.

* ‘who’ has been modified to reflect changes made in valid directory
 names (with multiple] and [allowed). The Term field has also
 been widened for the diplay of longer terminal device names (such
 as virtual terminals).

 -14-

18

 Release Notes

 Changes for the Spring 1986 Release

 New Utilities

* ‘cron’ executes commands at specified dates and times according to
 the instructions in the file ˜usr/crontab. Since CRON never exits,
 it should only be executed once, usually when the system is
 booted.

 -15-

19

 __ __ _ ____
| \/ | __ _ _ __ _ _ __ _| | | _ \ __ _ __ _ ___ ___
| |\/| |/ _‘ | ’_ \| | | |/ _‘ | | | |_) / _‘ |/ _‘ |/ _ \/ __|
| | | | (_| | | | | |_| | (_| | | | __/ (_| | (_| | __/__ \
|_| |_|__,_|_| |_|__,_|__,_|_| |_| __,_|__, |___||___/
 |___/

20

The Software Tools on-line documentation is divided into several
sections. The standard manual sections contain the following
information:

1 Writeups on the utilities available in the system (e.g. ed)
2 Writeups on the virtual machine system calls available to
 ratfor programmers.
3 Writeups on library routines available to ratfor programmers.
4 Primers on some of the more heavily used utilities.

In addition, other site-dependent manual sections may be
maintained by your system manager.

Three utilities are currently available for perusing the on-line
documentation: intro, apropos and man. Specific information can
be obtained on each of these utilities by performing a command
of the form:

man NAME

where NAME is replaced by intro, apropos or man.

In addition, some of the more heavily used forms of these
commands are listed below.

man -s
 List all available manual sections.

man -s1
 List all available entries in manual section 1.

man ed
 List the manual entry on ‘ed’. If entries exist in more
 than one section, only the first is displayed, with a note
 concerning the other entries displayed following the first
 entry.

man -a -s2
 Display all entries in section 2.

man -a
 Display all entries for all sections (the entire manual).

intro -s2
 Display a one-line synopsis of all entries in section 2.

apropos mail
 Display a one-line synopsis of all entries in the manual
 that match the pattern ‘mail’.

21

 ____ _ _ _
/ ___| ___ ___| |_(_) ___ _ __ / |
___ \ / _ \/ __| __| |/ _ \| ’_ \ | | _____
 ___) | __/ (__| |_| | (_) | | | | | | |_____|
|____/ ___|___|__|_|___/|_| |_| |_|

 _ _ _ _ _ _ _ _
| | | | |_(_) (_) |_(_) ___ ___
| | | | __| | | | __| |/ _ \/ __|
| |_| | |_| | | | |_| | __/__ \
 ___/ __|_|_|_|__|_|___||___/

22

 Intro (1) 11-Jan-79 Intro (1)

 NAME
 Intro - list on-line documentation

 SYNOPSIS
 intro [-s<section]

 DESCRIPTION
 Intro lists a short synopsis of each manual entry which is
 available for the specified section (section 1 is the
 default). Valid section names are described in the writeup for
 ‘man’. These documents can then be accessed via the tool
 ’man’.

 FILES
 Intro accesses the archive file containing the user
 documentation.

 SEE ALSO
 man; the Unix tool ’help’

 DIAGNOSTICS
 none

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

23

 Acat (1) 11-Mar-82 Acat (1)

 NAME
 Acat - concatenate nested archive entries on standard output

 SYNOPSIS
 acat archive‘module[‘module...] ...

 DESCRIPTION
 ‘acat’ performs the equivalent function to ‘cat’ on archive
 files created by the ‘ar’ utility. The true power of ‘acat’
 lies in its ability to extract the modules from within nested
 archives. Some examples may help clarify its use.

 Suppose the file arch1 consists of the modules mod1a, mod1b and
 mod1c. In addition, mod1c is itself an archive, consisting of
 modules mod2a and mod2b. The command line

 % acat arch1‘mod1a

 is equivalent to the ‘ar’ command

 % ar p arch1 mod1a

 More importantly, if the user desires to see mod2a in mod1c in
 arch1, the command

 %acat arch1‘mod1a‘mod2a

 will do the trick.

 FILES

 SEE ALSO
 ar - archive file maintainer
 cat - concatenate files

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

24

 Admin (1) 14-Sep-81 Admin (1)

 NAME
 Admin - administer TCS file.

 SYNOPSIS
 admin -ifile file.tcs

 DESCRIPTION
 Admin -i enters a text file into the TCS system for the first
 time. File is the source file to be entered into the system.
 Local convention is to use the name "file.tcs" for files
 maintained by TCS.

 The file is tagged as Version #1.1 and the user is prompted for
 initial comments concerning the development of the file.

 The date, time and user ID are recorded in the statistics
 portion of the file.

 FILES
 A scratch file is used while creating the output file and moved
 upon completion of input.

 SEE ALSO
 delta, get

 DIAGNOSTICS
 usage: admin -ifile file.tcs
 Correct calling format is provided when called
 without arguments.

 - flag missing
 Incorrect calling procedure.

 -i... filename missing
 The input filename is expected to be immediately
 adjacent to the -i flag. (no white-space)

 Invalid flag
 -i is the only valid flag at present.

 AUTHORS
 Neil Groundwater at ADI.

 BUGS/DEFICIENCIES

 -1-

25

 Alist (1) 11-Jan-79 Alist (1)

 NAME
 Alist - generate paginated listing of source archive

 SYNOPSIS
 alist [file] ...

 DESCRIPTION
 ‘alist’ generates a paginated listing of archive files. A
 table of contents with the relative page number in the listing
 is displayed first, with each element of the archive file
 starting on a new page. The second page of the listing
 contains a sorted index of entries, with the starting page
 number. If no files are specified, the standard input is
 read. ‘alist’ considers each line which starts with the string
 "#-h-" to be the beginning of a new entry, so that nested
 archives will be handled reasonably. The listing is displayed
 on standard output, and may be piped into lpr to queue to the
 printer.

 FILES

 SEE ALSO
 pr - print files

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

26

 Apropos (1) 22-Jul-83 Apropos (1)

 NAME
 Apropos - locate manual entries matching user-specified
 patterns

 SYNOPSIS
 apropos pattern [pattern] ...

 DESCRIPTION
 apropos searches the on-line documentation system for entries
 which match the regular expression patterns supplied in the
 command line. For each entry so found, a one-line synopsis of
 the entry (similar to the one displayed by the tool ‘intro’) is
 displayed on standard output, with the section where the entry
 may be found. The ‘man’ utility can then be used to retrieve
 more information on the topic.

 EXAMPLES
 To get a list of all entries having anything to do with the mail system,
 type the following command:

 apropos mail

 FILES
 Accesses the known files for each section in the ˜man
 directory.

 SEE ALSO
 The tools ’intro’ and ’man’; the Unix command ’man’

 DIAGNOSTICS

 AUTHORS
 Joe Sventek.

 -1-

27

 Ar (1) 11-Oct-79 Ar (1)

 NAME
 Ar - archive file maintainer

 SYNOPSIS
 ar {dpstux}[v/1] arcname [file] ...

 DESCRIPTION
 Ar collects sets of arbitrary files into one big file and
 maintains that file as an ’archive’. Files can be extracted
 from the archive, new ones can be added, old ones can be
 deleted or replaced by updated versions, and data about the
 contents can be listed.

 If a minus sign (’-’) is given as a file name, further file
 names are read from the standard input, one file name per
 line.

 Files that are to be added to an archive must exist as files
 with the name given. Files that are extracted from an archive
 will be put onto files with the name given. Files that are
 added to archives can, of course, be archive files
 themselves. There is no (theoretical) limit to the number of
 files that can be nested this way. Thus Ar provides the
 utility necessary to maintain tree-structured file
 directories.

 Ar is invoked by the command line

 Ar command archname [optional filenames]

 where ’command’ is any one of ’uxtpds’, optionally
 concatenated with ’v’ or ’1’, specifying what operation to
 perform on the archive file named ’archname’. The possible
 commands are:

 u - Update named archive by replacing existing files
 or adding new ones at end. If the ’v’ option is
 used, file names will be printed on the standard
 output as files are written to the new archived
 file.

 x - Extract named files from archive. Put onto file
 of the same name. If the ’v’ option is added, file
 names will be printed on the standard output as
 files are extracted.

 d - Delete named files from archive. If the ’v’
 option is used, file names will be printed on the
 standard output as they are deleted from the
 archive.

 -1-

28

 Ar (1) 11-Oct-79 Ar (1)

 p - Print named files on standard output. Using the
 ’v’ option will cause the file name to precede the
 file.

 t - Print table of archive contents. Normally, the
 table will contain only the file name. If the ’v’
 option is used, the table will also contain the
 file’s length, type, and date and time of last
 change. By default, if the standard output is a
 terminal, ar will pack five names per line in the
 non-verbose mode. If the optional ’1’ option is
 used, the output is force to single column, which is
 the default is standard output is not a terminal.
 For example,

 ar t archive

 might generate the following output:

 a b c d

 whereas

 ar t1 archive

 would generate

 a
 b
 c
 d

 s - Salvage. This command may be used to recover a
 damaged archive whose character counts do not
 reflect the correct number of characters in the
 file. The ’s’ command extracts all files from the
 archive, ignoring characters counts, date and time
 stamps, etc. on the archive header lines; it simply
 uses ’#-h-, which begins each archive member, and the
 file name which follows it. The files are then
 replaced in the archive, with corrected character
 counts. Thus, the ’s’ flag is useful for salvaging
 the contents of ’alien’ archive files and for saving
 damaged archives. It does not work on nested
 archives (i.e. archives within archives).

 v - Verbose. This command may be concatenated to any
 of the above commands, and will cause the archiver

 -2-

29

 Ar (1) 11-Oct-79 Ar (1)

 to print additional information, generally file
 names, on the standard output. Its specific action
 for each command has already been described.

 The optional filenames in the command line specify individual
 files that may participate in the action. If no files are
 named, the action is done on ALL files in the archive, but if
 any files are explicitly named, they are the ONLY ones that
 take part in the action. (The ’d’ command is an
 exception--files may be deleted only by specifying their
 names.)

 FILES
 A file ’arctemp’ is created and subsequently deleted for each
 run.

 SEE ALSO
 The Unix commands ’ar’ and ’ls’ in the Unix manual
 ‘rar’ - rearrange archive

 DIAGNOSTICS
 archive not in proper format
 The basic problem is that archive didn’t find a
 header line where one was expected. Typical reasons
 include misspelling the file name, using an existing
 file (not in archive format) on a creation run, and
 referencing an archive file that has been modified
 directly (say with the editor).

 delete by name only
 For user protection, files are allowed to be deleted
 from an archive only by specifying each file name.

 duplicate file name
 A file was listed more than once when calling the
 archiver

 fatal errors-archive not altered
 This message is generated whenever one or more of the
 other errors have been detected. An archive is
 never altered unless EVERYTHING has run properly.

 too many file names
 At the present the user may call the archiver with no
 more than 25 files at a time.

 usage: ar [dptuxsv] arcname [files]
 The command line passed to the archiver is in error.
 Possibly the command is wrong or the archived file
 name has not been given.

 -3-

30

 Ar (1) 11-Oct-79 Ar (1)

 ’filename’: can’t add
 The file specified by ’filename’ doesn’t exist or
 can’t be opened (e. g. is locked).

 ’filename’: can’t create
 The archiver could not generate a local file by the
 name of ’filename’. Probably the archiver’s
 internal file buffer space has been exceeded.

 ’filename’: not in archive
 The archiver could not locate the file specified by
 ’filename’ in the archived file.

 AUTHORS
 Original code from Kernighan and Plauger’s ’Software Tools’,
 with modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES
 On some systems only text files can be archived.

 When the update and print commands are used, the files are
 updated or printed in the order they appear on the archived
 file, NOT the order listed on the command line.

 The ’s’ salvage command works only on unnested archives.

 The Unix archiver allows files to be positioned in the
 archive, rather than simply added at the end as Ar does. This
 is done by adding the following commands:

 m - Move specified files to end of archive

 ma posname - Move specified files to position after
 file ’posname’

 mb posname - Move specified files to position before
 file ’posname’

 r - Replace specified files and place at end of
 archive

 ra posname - Replace files and place after file
 ’posname’

 rb posname - Replace files and place before file
 ’posname’

 There are some discrepancies between the Unix version of Ar

 -4-

31

 Ar (1) 11-Oct-79 Ar (1)

 and this version. Unix uses ’r’--replace instead of
 ’u’--update. Unix also requires the user to specify an
 additional command ’n’ when creating a new archive.

 -5-

32

 Args (1) 25-Aug-80 Args (1)

 NAME
 Args - use standard input as arguments for command

 SYNOPSIS
 args [-v] tool [arguments]

 DESCRIPTION
 Args reads the standard input file and concatenates the words
 found there onto the arguments passed to it. It then spawns
 the tool "tool" with those arguments. The first argument to
 Args which does not start with a "-" is taken to be the name of
 the tool to be invoked. Args uses the same search path as the
 shell, and if "tool" is a script file, a copy of the shell will
 be spawned reading that file for its commands. The optional -v
 argument causes Args to display the final command line on
 ERROUT before spawning the sub-process.

 The most common use of Args is as a form of argument explosion,
 as in the following example:

 Suppose you wish to delete all files which have the string
 "tst" somewhere in the filename. This may be accomplished
 with the following shell command line:

 % ls tst | args rm -v

 All of the files matching the pattern "tst" will be fed to
 Args, which will concatenate the names onto Rm’s command
 line. Rm will then be spawned, and will print the name of
 each file as it is deleted.

 If the information found on standard input is so voluminous as
 to cause the argument string to be too large, the command line
 is displayed on ERROUT and the process is NOT spawned.

 FILES
 none

 SEE ALSO
 sh - command line interpreter (for search path rules)

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

33

 Asam (1) 11-Mar-82 Asam (1)

 NAME
 Asam - generate index for archive file

 SYNOPSIS
 asam <input_archive

 DESCRIPTION
 ‘asam’ generates the same type of index as ‘isam’, with the
 exception that index lines are generated only for the archive
 header lines. The generated index appears on standard output,
 and may be sorted or whatever necessary for the application.
 The primary key output in the index line is the name of the
 module. Unlike ‘isam’, there are no switches for output
 control in the generated index lines. The module name is
 output, followed by a blank character, followed by the
 formatted linepointer.

 ‘asam’ is used specifically to generate the indices for the
 manual sections found in ˜man.

 FILES

 SEE ALSO
 isam - generate index for indexed-sequential access

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

34

 Asplit (1) 25-Aug-80 Asplit (1)

 NAME
 Asplit - salvage garbaged archive files

 SYNOPSIS
 asplit [-tstring] [-v]

 DESCRIPTION
 asplit reads the standard input file, looking for lines
 beginning with the archive header flag (#-h-). Upon locating
 such a line, the next word after the header is used to generate
 a file name, and all lines read up to the next pseudo-header
 line are written onto that file. When generating the file
 name, only the characters found before a left parenthesis are
 used, if one is found. If the -t switch is used, the string
 appended to the -t is appended to each file name before the
 file is created, thus permitting a fixed tag string to be
 formatted into the file name. If the -v option is specified,
 the name of each file is reported on ERROUT as it is opened.
 Any lines found at the beginning of the file before the first
 pseudo-header line is copied to standard output.

 asplit is commonly used to salvage an archive which has been
 garbaged, or to take a monster fortran source program file and
 break it up into subroutines. A script file (breakup) may be
 found on the tools binary directory which will cause each
 subprogram of the form "subroutine snarf" or "... function
 snarf" to be placed on a file of the name "snarf.qq". The only
 side effect of this transformation is that the source will be
 in lower case, and may be remedied by modifying the file
 breakup.

 FILES
 none

 SEE ALSO
 ar - file archiver: the -s switch does essentially the same
 thing as asplit, except that it tries to rebuild the source
 file as a new archive, which does not always work in
 pathological cases.
 sepfor - split FORTRAN programs into multiple files

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

35

 Axref (1) 11-Mar-82 Axref (1)

 NAME
 Axref - cross reference symbols in archive files

 SYNOPSIS
 axref [-fr] [file] ...

 DESCRIPTION
 ‘axref’ produces a cross-reference list of the symbols found in
 each of the named files on the standard output. Each symbol is
 listed followed by the numbers of the lines in which it
 appears. If no files are specified, of the file "-" is
 specified, ‘axref’ reads the standard input.

 ‘axref’ differs from ‘xref’ in that it generates a separate
 cross-reference list for each module found within an archive.
 Module boundaries are defined to be those lines which start
 with the string "#-h-", as generated by the file archiver.
 Each module is preceded with the label

 file/module_name:

 on the standard output.

 A symbol is defined as a string of letters, digits and
 underlines that begins with a letter. Symbols exceeding an
 internal limit are truncated. This limit is determined by the
 MAXTOK definition in the source code, and is currently set to
 15.

 By default, ‘axref’ differentiates between upper- and
 lower-case letters. The ‘-f’ option causes all letters within
 symbols to be folded to a single case.

 Normally, the line numbers specified in the symbol table are
 relative to the current file being processed. The ‘-r’ option
 causes the line numbers specified to be relative to the start
 of the current archive module.

 FILES

 SEE ALSO
 xref - make a cross reference of symbols

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 -1-

36

 Axref (1) 11-Mar-82 Axref (1)

 BUGS/DEFICIENCIES

 -2-

37

 Banner (1) 16-Mar-82 Banner (1)

 NAME
 Banner - generate large banner lines

 SYNOPSIS
 banner [string]

 DESCRIPTION
 ‘banner’ formats the specified text strings into large banner
 lines on standard output. If a command argument is specified,
 then that string is output; otherwise, standard input is read,
 with each line being displayed on standard output, until an EOF
 is detected. Each character is printed in a 7 x 7 window, with
 the character occupying the central 5 x 5 portion. The file
 ‘˜bin/bigchar’ can be consulted for the format of the character
 file.

 FILES
 ˜bin/bigchar

 SEE ALSO

 DIAGNOSTICS
 If a character is detected which has no correspondence in the
 character file, a blank is displayed.

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

38

 BarGraph (1) 11-Nov-81 BarGraph (1)

 NAME
 BarGraph - draw a 0-100% bargraph of integer data

 SYNOPSIS
 bargraph -[cfFhmrRsw] file ...

 DESCRIPTION
 BarGraph draws a simple graph of integer data scaled to
 0-100%. Each line of input is expected to contain two fields,
 a label and a number, both in ASCII. The label and its
 associated numeric value should be separated by one or more
 BLANKs or a TAB. There are several options for controlling the
 appearance of the graph:

 -c<c> use <c> as the character for plotting the ordinate
 instead of ‘‘|’’ (the default)

 -f<c> use <c> to fill the area under the bar

 -F<c> use <c> to fill the area over the bar

 -h output column headers

 -m[c] display the mean of the data, using ‘‘c’’ if
 specified instead of ‘‘.’’ (the default)

 -r[c] display ruling every 10% under the bar, using ‘‘c’’
 if specified instead of ‘‘:’’ (the default)

 -R[c] display ruling every 10% over the bar, using ‘‘c’’ if
 specified instead of ‘‘:’’ (the default)

 -s plot the running sum of the data values rather than
 the values themselves

 -w make the graph 132 columns wide rather than 80

 EXAMPLES
 bargraph -h -f* -w file

 would make a 132-column wide graph of the data in ‘‘file’’,
 with column headers and ‘‘*’’ characters filling under the
 bar.

 d "-f16n 9c" | bargraph "-f|"

 would graph the sizes of all files in the current directory
 using ‘‘|’’ as the fill character below the bar. Note that it
 is necessary to put quotes around character specification
 options when specifying characters that are special to the

 -1-

39

 BarGraph (1) 11-Nov-81 BarGraph (1)

 shell (the "-f|" in the above example).

 FILES
 none

 SEE ALSO

 DIAGNOSTICS
 ? Too much data: increase TABLE_SIZE

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 There is an upper limit to the number of points which may be
 graphed. This limit may be raised by increasing the value of
 TABLE_SIZE. Numeric values are currently limited to 7 digits
 or less.

 -2-

40

 Box (1) 23-Jul-81 Box (1)

 NAME
 Box - draw boxes around block structure of RatFor or C programs

 SYNOPSIS
 box [-e] [-d{device}] [-] file ...

 DESCRIPTION
 Box draws boxes around statement groups (beginning with "{" and
 ending with "}") to make them more legible. It is designed to
 be used as a pretty-printer for RatFor or C code that is
 indented as follows:

 level 0
 {
 level 1
 {
 level 2
 }
 level 1
 }
 level 0

 For this input, box generates:

 level 0
 +-------------+
 | level 1 |
 | +---------+ |
 | | level 2 | |
 | +---------+ |
 | level 1 |
 +-------------+
 level 0

 The alignment of the "{" and "}" characters and the indentation
 of 2 spaces per level are required for proper operation. If
 TABs are present in the input, they are replaced with blanks,
 on the assumption of 8 spaces per TAB. The "-d" option takes
 advantage of the line-drawing character sets on certain
 devices; currently the DEC vt100 and the Heath h19 are
 supported.

 EXAMPLES
 box -dvt100 myfile

 box the file "myfile" to STDOUT (assumed to be a vt100)

 AUTHORS
 Dave Martin (Hughes Aircraft)

 -1-

41

 Box (1) 23-Jul-81 Box (1)

 BUGS/DEFICIENCIES

 -2-

42

 Cat (1) 16-Feb-78 Cat (1)

 NAME
 Cat - concatenate and print text files

 SYNOPSIS
 cat [-v] [file] ...

 DESCRIPTION
 ‘cat’ reads each file in sequence and writes it on the standard
 output. Thus

 cat file

 prints the file, and

 cat file1 file2 >file3

 concatenates the first two files and places the result on the
 third.

 If no argument or ’-’ is given, ‘cat’ reads the standard
 input.

 If the ’-v’ option is specified, all control characters are
 displayed as ’^C’, where C is the character that must be typed
 with the CTRL key when entering the character. If any DEL(RUB)
 characters are found, they are displayed as ’^?’. A dollar
 sign character (’$’) is displayed at the end of each line to
 aid in location of trailing blanks in lines.

 FILES
 none

 SEE ALSO
 The "Software Tools" book, p. 77.
 The UNIX tools cat, PR, CP

 DIAGNOSTICS
 A message is printed if a file cannot be opened; further
 processing is terminated.

 AUTHORS
 Dennis Hall, Debbie Scherrer and Wen-Sue Gee.

 BUGS/DEFICIENCIES
 Using the same file for output as well as input may cause
 strange results.

 -1-

43

 Ccnt (1) 11-Jan-79 Ccnt (1)

 NAME
 Ccnt - character count

 SYNOPSIS
 ccnt [file] ...

 DESCRIPTION
 ccnt counts characters in the named file(s). Newlines are
 counted as characters. If no file name or the file ’-’ is
 given, standard input will be read.

 FILES
 none

 SEE ALSO
 wcnt - count words
 lcnt - count lines
 the Unix command ‘wc’

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Original from Kernighan and Plauger’s ’Software Tools’, with
 minor modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

44

 Ch (1) 7-Apr-78 Ch (1)

 NAME
 Ch - make changes in text files

 SYNOPSIS
 ch [-ax] [expression] ... fromexpr [toexpr]

 DESCRIPTION
 ch copies each line of the standard input to the standard
 output, globally substituting the text pattern "toexpr" for
 "fromexpr" on each line that satisfies matching criteria
 defined by the leading expressions "expression" and the
 switches. (A text pattern is a subset of a "regular
 expression"--see the "ed" writeup for a complete description.)
 Three possible courses of action are taken depending upon the
 number of text patterns(n) found in the command line:

 n=1 The text pattern is assumed to be "fromexpr" with a null
 "toexpr"; it is equivalent to the ed command
 g/fromexpr/s///g
 n=2 The first text pattern is "fromexpr", the second is
 "toexpr"; it is equivalent to the ed command
 g/fromexpr/s//toexpr/g
 n>=3 The (n-1)th pattern is "fromexpr", the nth is "toexpr" and
 patterns 1...n-2 are used to determine the lines upon
 which to perform the substitution. The default is that
 any line which matches any one of the n-2 leading
 expressions are eligible for substitution. If the -a flag
 is specified, only lines which match all n-2 leading
 expressions in any order are eligible. If the -x flag is
 specified, all lines which don’t satisfy the above
 criteria are eligible. (See the writeup on find for more
 information.) In particular, if n=3,
 ch expr from to
 is equivalent to the ed command
 g/expr/s/from/to/g
 ch -x expr from to
 is equivalent to the ed command
 x/expr/s/from/to/g

 The substitution string "toexpr" may be a string of replacement
 characters, null to effect a deletion, or it may include the
 special "ditto" character "&" to put back the "fromexpr" string
 and thus effect an insertion. It may also contain the
 expressions ‘$1’ ... ‘$9’, which cause the corresponding tagged
 pattern in the input to be inserted. If a deletion is desired
 with the multiple leading tag expressions, a "toexpr" of ""
 -i.e. quotes around an empty string may be used.

 A text pattern consists of the following elements:

 -1-

45

 Ch (1) 7-Apr-78 Ch (1)

 c literal character
 ? any character except newline
 % beginning of line
 $ end of line (null string before newline)
 [...] character class (any one of these characters)
 [!...] negated character class (all but these characters)
 {expr} tagged pattern (referenced by $1 ... $9)
 * closure (zero or more occurrences of previous pattern)
 + anchored closure (one or more occurrences of previous pattern)
 @c escaped character (e.g., @%, @[, @*)

 Any special meaning of characters in a text pattern is lost
 when escaped, inside [...], or for:

 % not at beginning
 $ not at end
 * at beginning
 + at beginning

 A character class consists of zero or more of the following
 elements, surrounded by [and]:

 c literal character
 a-b range of characters (digits, lower or upper case)
 ! negated character class if at beginning
 @c escaped character (@! @- @ @])

 Special meaning of characters in a character class is lost
 when escaped or for

 ! not at beginning
 - at beginning or end

 An escape sequence consists of the character @ followed by a
 single character:

 @f formfeed
 @l linefeed
 @n newline
 @r return
 @t tab
 @OOO the octal digit representation for an ASCII character
 for example, @001 for the ASCII character SOH
 @c c (including @)

 For a complete description, see "Software Tools" pages
 135-154. Care should be taken when using the characters % $ [
] ! * + @ and any shell characters in the text pattern. It is
 often necessary to enclose the entire substitution pattern in
 quotes.

 -2-

46

 Ch (1) 7-Apr-78 Ch (1)

 FILES
 none

 SEE ALSO
 The UNIX tool GRES
 The tools find and ed
 xch - extended change utility

 DIAGNOSTICS
 An error message is printed if the pattern given is illegal.

 AUTHORS
 ’CH’ was originally implemented on BKY by Debbie Scherrer from
 Kernighan and Plauger’s "Software Tools". Major modifications
 were performed by Joe Sventek.

 BUGS/DEFICIENCIES
 A minus sign(dash[-]) may not start an expression.

 -3-

47

 Chmod (1) 30-Oct-81 Chmod (1)

 NAME
 Chmod - change mode (protection codes) of file

 SYNOPSIS
 chmod system owner group world file...

 DESCRIPTION
 Chmod allows you to change the protection bits on one or more
 files. The protection fields for system, owner, group and
 world are specified by groups of the following characters:

 a allow all access

 r allow read access

 w allow write access

 e allow execute access

 d allow delete access

 n allow no access

 Each of the four fields must be present and in the proper
 order.

 EXAMPLES
 chmod re rwed re re prog1.exe prog2.exe

 chmod a a r r text.fmt

 chmod n rwed n n secret.txt

 FILES
 none

 SEE ALSO
 The UNIX command "chmod".

 DIAGNOSTICS
 ? Can’t change protection of file ‘‘filename’’.

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 If you deny yourself write access to a file you own you will
 have to resort to the DCL "set protection" command to regain
 it.

 -1-

48

 Chown (1) 27-Oct-81 Chown (1)

 NAME
 Chown - change the ownership of file(s).

 SYNOPSIS
 chown user file ...

 DESCRIPTION
 chown makes "user" the owner of all listed files. "User" may
 be specified either as a username or a UIC ([ggg,mmm]).

 FILES
 The mail system database "˜msg/address" is used to resolve
 usernames into UICs.

 SEE ALSO
 The UNIX command "chown".

 DIAGNOSTICS
 A message is displayed if you don’t have the necessary
 privilege to change a file’s owner.

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES

 -1-

49

 Cmp (1) 6-Mar-78 Cmp (1)

 NAME
 Cmp - compare two files

 SYNOPSIS
 cmp file1 [file2]

 DESCRIPTION
 file1 is compared line-by-line with file2. If file2 is not
 specified, standard input is used. If any lines differ, cmp
 announces the line number and prints each file’s offending
 line.

 FILES
 none

 SEE ALSO
 comm
 The UNIX commands cmp, diff, and comm

 DIAGNOSTICS
 If the end of one file is reached before the end of the other,
 a message is printed.

 AUTHORS
 Acquired from "Software Tools" by Kernighan and Plauger, with
 minor modifications made by Debbie Scherrer.

 BUGS/DEFICIENCIES
 If either file is binary, spurious results should be
 expected.

 Cmp cannot handle offset lines: line n of file1 is simply
 compared to line n of file2.

 Trailing blanks are significant, which will cause some lines
 to appear similar to the user which are actually different.

 -1-

50

 Comm (1) 11-Jan-79 Comm (1)

 NAME
 Comm - print lines common to two files

 SYNOPSIS
 comm [-123] file1 [file2]

 DESCRIPTION
 comm reads file1 and file2, which should be sorted, and
 produces a three column output: lines only in file1, lines only
 in file2, and lines in both files. The filename ’-’ means the
 standard input. If there is only one file argument, file2
 refers to the standard input.

 The optional arguments -1, -2, and -3 specify the printing of
 only the corresponding column. Thus "comm -3" prints only the
 lines common to both files, and "comm -12" prints lines which
 are in either file, but not in both. The default is -123.

 FILES
 none

 SEE ALSO
 cmp - compare two files
 the Unix tool "diff"

 DIAGNOSTICS
 A message is printed if an input file cannot be opened.

 AUTHORS
 Debbie Scherrer

 BUGS/DEFICIENCIES
 The flags used by this tool are the reverse of those used by
 the Unix ’comm’. In Unix, the flags 1, 2, and 3 suppress
 printing of the corresponding column. Kernighan, on page 126
 of ’Software Tools’ suggests the version used above.

 -1-

51

 Cp (1) 14-Nov-81 Cp (1)

 NAME
 Cp - copy files

 SYNOPSIS
 cp [-v] from [to]

 DESCRIPTION
 Cp duplicates file ‘‘from’’ into file ‘‘to’’. If the ‘‘to’’
 argument is omitted, ‘‘*’’ is assumed. If the ‘‘-v’’ (verbose)
 option is specified, a confirming message is displayed as each
 file is copied.

 EXAMPLES
 cp file.c file.bak

 would make a backup copy of ‘‘file.c’’ called ‘‘file.bak’’.

 cp ˜usrlib/command.fmt

 would make a copy of ‘‘˜usrlib/command.fmt’’ in the current
 directory keeping the same name.

 cp -v ˜src/*.w /mt/*

 would make a backup copy of all files with an extension of
 ‘‘.w’’ in directory ‘‘˜src’’ onto magnetic tape, confirming
 each file copied.

 FILES
 none

 IMPLEMENTATION
 Cp spawns the DCL ‘‘copy’’ command after converting the two
 arguments from pathnames to filespecs. If the ‘‘-v’’ option is
 specified, the DCL ‘‘/log’’ qualifier is added.

 SEE ALSO
 mv -- move files
 The UNIX command ‘‘cp’’.

 DIAGNOSTICS
 ? Can’t spawn ‘‘copy’’.

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 DCL wildcards work; regular expressions don’t.

 -1-

52

 Cpress (1) 15-Jan-79 Cpress (1)

 NAME
 Cpress - compress input files

 SYNOPSIS
 cpress [file] ...

 DESCRIPTION
 cpress compresses runs of repeated characters in the input
 files. The output file can eventually be expanded with the
 tool ’expand’.

 If no input files are given, or the filename ’-’ appears, input
 will be from the standard input.

 FILES
 none

 SEE ALSO
 expand

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 From Kernighan & Plauger’s ’Software Tools’, with modifications
 by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

53

 cron (sys) 24-Jan-84 cron (sys)

 NAME
 cron - clock daemon

 SYNOPSIS
 ˜bin/cron

 DESCRIPTION
 CRON executes commands at specified dates and times according
 to the instructions in the file ˜usr/crontab. Since CRON never
 exits, it should only be executed once, usually when the system
 is booted.

 Crontab consists of lines of six fields each. The fields are
 separated by spaces or tabs. The first five are integer
 patterns to specifiy:

 minute 0-59
 hour 0-23
 day of the month 1-31
 month of the year 1-12
 day of the week 1-7 (1 => Monday)

 Each of these patterns may contain a number in the range above;
 two numbers separated by a minus meaning a range inclusive; a
 list of numbers separated by commas meaning any of the numbers;
 or an asterisk meaning all legal values. The sixth field is a
 string that is executed by the Shell at the specified times.

 CRONTAB is examined by CRON at periodic intervals, usually
 between 1 and 10 minutes.

 EXAMPLES
 0,10,20,30,40,50 9-17 * * 1-5 command

 Execute command every 10 minutes from 9AM-5PM Monday-Friday.

 23 50 * * 5 command

 Execute command at 10 minutes before midnight every Friday.

 FILES
 ˜usr/crontab
 ˜usr/cron.log

 AUTHORS
 Joe Sventek

 -1-

54

 Crt (1) 15-Nov-81 Crt (1)

 NAME
 Crt - copy files to terminal a screen at a time

 SYNOPSIS
 crt [-n] [file] ...

 DESCRIPTION
 crt is similar to ’cat’ except that it prints only n lines
 (default 22) at a time. After each set of lines are printed,
 crt will wait for instructions from the user. Hitting a SPACE
 or RETURN will cause the next n lines to appear, hitting a ’q’
 (quit) will cause crt to skip over to the next input file (if
 any), and hitting an end-of-file character (^Z) will cause crt
 to stop immediately.

 If no files are specified, or if the filename ’-’ is given,
 lines will be read from the standard input.

 The flag -n may be given, where n specifies the number of lines
 desired at a time.

 crt will stop at the end of each file (except the last), as
 well as after each n lines.

 FILES
 none

 SEE ALSO
 cat

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Debbie Scherrer; Modified to use RARE i/o by Dave Martin.

 BUGS/DEFICIENCIES

 -1-

55

 Crypt (1) 15-Jan-79 Crypt (1)

 NAME
 Crypt - crypt and decrypt standard input

 SYNOPSIS
 crypt key

 DESCRIPTION
 crypt encrypts characters on the standard input by using
 ’key’. The file can eventually be decrypted by running it back
 through crypt with the same key. Double encryption (encrypting
 a file with first one key and then another) is allowable, but
 on some systems the decryption must be done in the exact
 reverse order as encryption was done.

 The encryption algorithm used by ’crypt’ is not a complicated
 one, so users requiring a great degree of protection should not
 rely on this tool.

 FILES
 none

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Original from Kernighan & Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer. (NOTE: the original
 encryption algorithm has been altered slightly.)

 BUGS/DEFICIENCIES
 On IAS and VMS systems, double encryption must be decrypted in
 the exact reverse order as the encryption.

 -1-

56

 D (1) 27-Jul-81 D (1)

 NAME
 D - list contents of directory

 SYNOPSIS
 d [-1dhnrtv] [-fstring] [pathname] ...

 DESCRIPTION
 D lists information about each file argument. When no argument
 is given, the default directory is listed. The file arguments
 may include any of the legal regular expressions described in
 the man entry for the editor, with the added feature that the
 comparisons will be case insensitive. By default, the files
 are listed in the order in which they are found in the
 directory. There are seven options:

 -1 force single column output to the terminal. The default is
 multi-column output to the terminal, single to a disk file.
 -d print only directory files found in this directory
 -h print a header at the top of verbose listings
 -n sort the directory by name
 -v list in verbose format
 -t sort by time modified (oldest first)
 -r reverse the sense of the sort

 -f use ‘string’ to specify the output format as follows:

 b size of file in blocks (normally 512 characters)

 c size of file in characters

 m modification date and time (dd-mmm-yy hh:mm:ss)

 n filename

 o file owner’s username

 p protection codes (oooo|gggg|wwww)

 t file type (asc|bin|dir)

 The ‘b’, ‘c’, ‘n’ and ‘o’ options accept an integer prefix
 which specifies the field width to be used.

 The verbose option formats its output as if you had
 specified "-f17n 9c t m p o" as a format string.

 It is necessary to surround the string (including the ‘-f’)
 with quotes if it contains any BLANKs or TABs.

 -1-

57

 D (1) 27-Jul-81 D (1)

 EXAMPLES
 The following command will cause all of the files which contain
 the string tst anywhere in the file name to be deleted:

 % d tst | args rm

 FILES
 lstemp1, lstemp2

 AUTHORS
 Ls was written by Joe Sventek. The ‘-f’ option was added by
 Dave Martin.

 SEE ALSO
 ed - text editor for description of regular expressions
 args - argument exploder
 ls - directory lister (with different default format)
 fd - fast directory lister in sort order

 -2-

58

 Date (1) 13-Jun-79 Date (1)

 NAME
 Date - print the date

 SYNOPSIS
 date [-n]

 DESCRIPTION
 The current day of the week, date, time, and time zone are
 printed in the format:

 day dd-mmm-yy hh:mm:ss zone

 if the -n switch is used the date is output in the following
 format:

 day mm/dd/yy hh:mm:ss zone

 FILES
 none

 SEE ALSO
 The Unix command ’date’

 DIAGNOSTICS
 none

 AUTHORS
 Debbie Scherrer

 BUGS/DEFICIENCIES

 -1-

59

 Dc (1) 20-Jul-80 Dc (1)

 NAME
 Dc - desk calculator

 SYNOPSIS
 dc [file] ...

 DESCRIPTION
 dc evaluates integer expressions from the source files, one
 expression per input line. If no input files are given, or the
 filename ’-’ is specified, dc reads from the standard input.

 Ordinarily dc operates on decimal integer arithmetic
 expressions, but the user may specify an input base and output
 base other than decimal.

 Expressions may be simple arithmetic expressions or replacement
 expressions. The values of simple expressions are written on
 standard output when they are evaluated. Replacement
 expressions are used to hold temporary values, and are not
 automatically printed.

 A simple expression is a normal arithmetic expression using
 numbers, variables, parentheses, and the following operators,
 listed in order of precedence:

 + - unary plus and negation operators. These may
 only appear at the start of a simple
 expression or after a "("

 ** exponentiation

 * / % multiply, divide, modulo (remainder)

 + - add, subtract

 == != relations - equals, not equal to,
 > >= greater than, greater than or equal to,
 < <= less than, less than or equal to
 (!=, ^=, ˜= all treated as "not equal")

 ! unary logical not (also ˜ and ^)

 | & logical or, and

 The logical operators ! | & and the relational operators result
 in the values 1 for true and 0 for false.

 A replacement expression is:

 name = simple expression

 -1-

60

 Dc (1) 20-Jul-80 Dc (1)

 where ’name’ is a character string of (virtually) any length,
 starting with a letter and consisting of only letters and
 digits. (The characters a-f should not be considered letters
 when operating in hexadecimal mode.) Variables are
 automatically declared when they first appear to the left of
 an "=" sign, and they should not be used in a simple expression
 until they have been declared.

 Radix Control
 Radix control is available in 2 ways:
 1) There are default radix values for both input and
 output which may be changed by setting the predefined
 variables ’ibase’ (input base) and ’obase’ (output base).
 (Radix 10 is always used to evaluate and/or print
 radix-defining expressions.) For example,

 ibase = 2
 obase = 16

 would accept input in binary and print results in
 hexadecimal.

 2) The radix of individual numbers may be explicitly
 given by following the number with an underscore character
 and then the desired radix. For example,

 100_16

 would specify the hex number 100 (256 in decimal).

 EXAMPLES
 10 + (-64 / 2**4)
 would print the answer "6"

 temp = 101_2
 temp == 5
 would print the answer "1" (true)

 ibase = 16
 obase = 2
 1a + f
 would print the answer "101001"

 ibase = 16
 numa = 100_10
 numb = 100
 numa + numb
 would print the answer "356"

 -2-

61

 Dc (1) 20-Jul-80 Dc (1)

 FILES
 none

 SEE ALSO
 macro, the UNIX M4 macro package
 The UNIX tools dc and bc

 DIAGNOSTICS
 arith evaluation stack overflow
 arithmetic expressions have been nested too deeply. The
 size of the stack is set by the MAXSTACK definition in the
 source code.

 number error
 an input number has a number/character bigger than the
 current radix

 expression error
 invalid arithmetic expression

 AUTHORS
 Philip H. Scherrer (Stanford U.)

 BUGS/DEFICIENCIES
 dc only works with integers

 The maximum value allowed depends on the host machine and is
 the largest Fortran integer

 -3-

62

 Delta (1) 14-Sep-81 Delta (1)

 NAME
 Delta - make an TCS delta

 SYNOPSIS
 delta revision history [newhistory]

 DESCRIPTION
 Delta integrates the current "revision" of a file into its TCS
 "history" file or into a "newhistory" file. Differences
 between this version and the preceeding version are computed
 and the TCS file will be able to reproduce either version (or
 earlier versions) by means of the GET command.

 The user is requested to provide a reason-for-change when
 prompted by "History?". Multiple lines may be entered to
 describe changes and terminated by ’.’ on a line by itself.

 FILES
 A scratch file is created during processing, then copied onto
 the "history". If a "newhistory" is given, the result will be
 moved there instead.

 SEE ALSO
 admin, get

 DIAGNOSTICS
 usage: delta revision history [newhistory]
 Correct calling format is provided when called
 without arguments.

 TCS Version Number corrupted.
 Unexpected EOF on history-info scan.
 Unexpected EOF on history-data scan.
 The TCS code seems to be present but garbled. Refer
 to a guru.

 Sudden death in input
 An end-of-file was detected while requesting the
 "reason for change".

 Revision file is empty
 Perhaps an incorrect filename was given.

 History file is empty
 The first formal version is entered by means of the
 ADMIN command.

 Files are too big to handle
 The DIFF algorithm table-size has been exceeded.
 Current version supports files of approximately

 -1-

63

 Delta (1) 14-Sep-81 Delta (1)

 15000-lines.

 Cannot locate TCS history file.
 Unable to read filename specified as the history
 file.

 Temp file error: (filename)
 The tempoary file created during processing
 disappeared unexpectedly.

 AUTHORS
 An Algorithm for Differential File Comparison by J.W.Hunt and
 M.D.McIlroy (BTL Computing Science Technical Report #41).
 Original code by Wil Baden; converted from MORTRAN by Dave
 Murray. Modifications and conversion to BTL-SCCS style by Neil
 Groundwater at ADI. The Source Code Control System was
 introduced by Marc J. Rochkind in the December, 1975, IEEE
 Transactions on Software Engineering.

 BUGS/DEFICIENCIES
 File permissions are NOT manipluated to restrict users from
 disturbing the maintained files.

 Version numbering ranges from 1.1 to 1.N where N is a very
 large number. Provision to increment the "primary" number upon
 demand is scheduled.

 Branching capabilities are scheduled to be implemented.

 -2-

64

 Detab (1) 12-Aug-81 Detab (1)

 NAME
 Detab - convert tabs to spaces

 SYNOPSIS
 detab [<t1>...] [+<n>] [file] ...

 DESCRIPTION
 detab converts tab characters (control-i) to equivalent strings
 of blanks. Tab stops are indicated by <t1>... (default 8, 16,
 ...), while +<n> indicates tab stops every <n> columns. Thus
 the command

 detab 5 21 +5

 supplies blanks for tabs terminating at column positions 5, 21,
 26, etc. If no files are specified, the standard input is
 read. An isolated minus sign also indicates the standard
 input.

 SEE ALSO
 entab
 lpr

 AUTHORS
 Original from Kernighan & Plauger’s ’Software Tools’, with
 modifications by Dennis Hall and Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

65

 Diff (1) 20-Mar-80 Diff (1)

 NAME
 Diff - isolate differences between files

 SYNOPSIS
 diff [-{c|d|r|s|v}] old_file [new_file]

 DESCRIPTION
 ’Diff’ compares the contents of two files and reports on the
 differences between them. The default behavior is to describe
 the insert, delete, and change operations that must be
 performed on ‘old_file’ to convert its contents into those of
 ‘new_file’.

 The second file name argument is optional. If omitted, the
 standard input is read for the text of the ‘new_file’.

 The options currently available are:

 -c Perform a simple line-by-line comparison.
 ’Diff’ will compare successive lines of the
 input files; if any corresponding lines differ,
 or if one file is shorter than the other, ’diff’
 prints the message "different" and exits. If
 the files are the same, ’diff’ produces no
 output. When the "-v" option (see below) is
 specified, ’diff’ prints the lines that differ
 along with their line number in the input file,
 and notifies the user if one file is shorter
 than the other.

 -d List the "differences" between the two files, by
 highlighting the insertions, deletions, and
 changes that will convert ‘old_file’ into
 ‘new_file’. This is the default option. If the
 "verbose" option "-v" (see below) is specified,
 unchanged text will also be listed.

 -r Insert text formatter requests to mark the
 ‘new_file’ with revision bars and deletion
 asterisks. This option is particularly useful
 for maintenance of large documents, like
 Software Tools reference manuals. (At present,
 only GT’s version of ’format’ can produce
 revision bars.)

 -s Output a "script" of commands for the text
 editor ’ed’ that will convert ‘old_file’ into
 ‘new_file’. This is handy for preparing updates
 to large programs or data files, since generally
 the volume of changes required will be much

 -1-

66

 Diff (1) 20-Mar-80 Diff (1)

 smaller than the new text in its entirety.

 -v Make output "verbose." This option applies to
 the "-c" and "-d" options discussed above. If
 not selected, ’diff’ produces "concise" output;
 if selected, ’diff’ produces more verbiage.

 ’Diff’ is based on the algorithm found in Heckel, P., "A
 Technique for Isolating Differences Between Files", _C_o_m_m_.
 _A_C_M 21, 4 (April 1978), 264-268.

 EXAMPLES
 To print the differences between two files on your terminal:

 diff -cv file maybe_the_same_file
 does a simple line-by-line comparison on the two files,
 printing lines which differ.
 (Expects no missing or extra lines.)
 Same as ’cmp file1 file2’.

 diff -s old_version new_version | ed - old_version
 make an ed script which changes ’old_version’ into ’new_version’

 diff -r old_manual.fmt new_manual.fmt | format
 to mark changes in a document.
 Useful only if your version of ’format’ has this capability.

 diff -s old new >>update_old_to_new
 to keep a list of changes made to an original source file

DIAGNOSTICS
 "<file>: can’t open" if either ‘new_file’ or ‘old_file’ is not
 readable.

 "Usage: diff . . ." for illegal options.

AUTHORS
 Allen Akin and friends, Georgia Institute of Technology

BUGS/DEFICIENCIES
 The algorithm used has one quirk: a line or a block of lines
 which is not unique within a file will be labeled as an
 insertion (deletion) if its immediately adjacent neighbors both
 above and below are labeled as insertions (deletions).

 Fails on very large files (> 10000 lines on VMS).

 -2-

67

 E (1) 12-Aug-81 E (1)

 NAME
 E - extended version of "ed" with command editing & history

 SYNOPSIS
 e [-] [-pprompt] [-n] [-v] [file]

 DESCRIPTION
 e is an extended version of ed which uses virtual memory rather
 than a scratch file for its text storage. This makes it
 considerably faster than ed. In addition, command editing &
 history are supported; see the writeup on "esh" for more
 information.

 Other commands and features which may not have found their way
 into ed:

 1. There is a terse help command, invoked via ‘h’.

 2. One can cause the current contents of the buffer to be
 roffed by issuing the "typeset" command via ‘t’. This
 causes format to be spawned, formatting the buffer
 contents to the terminal. The buffer contents are not
 affected. If more sophisticated use of format is
 necessary, or you deires to spawn something other than
 format, see the ed writeup for the ‘^’ command.

 3. A command is available to see how much of the virtual
 memory array space has been used via ‘%’. If you exhaust
 the array space with many changes, simply writing the file
 followed by the enter command will cause garbage
 collection to occur.

 For information on the other commands to e, consult the manual
 entry for ed.

 FILES

 AUTHORS
 The extra features of e above those of ed are due to Dave
 Martin.

 SEE ALSO
 ed - text editor

 BUGS/DEFICIENCIES

 -1-

68

 Echo (1) 7-Jul-78 Echo (1)

 NAME
 Echo - echo command line arguments

 SYNOPSIS
 echo [arg] ...

 DESCRIPTION
 Echo writes its arguments in order as a line on the standard
 output file. It is useful for producing messages and
 diagnostics in command files.

 FILES
 none

 SEE ALSO
 The Unix command "echo"

 DIAGNOSTICS
 none

 AUTHORS
 Debbie Scherrer

 -1-

69

 Ed (1) 21-Apr-78 Ed (1)

 NAME
 Ed - line-oriented text editor

 SYNOPSIS
 ed [-] [-pstring] [-n] [-v] [file]

 DESCRIPTION
 Ed is a text editor. If the ’file’ argument is given, the file
 is read into ed’s buffer so that it can be edited and its
 name is remembered for possible future use. Ed operates on a
 copy of any file it is editing; changes made in the copy have
 no effect on the file until a w (write) command is given.

 The optional ’-’ suppresses the printing of line counts by the
 e (edit), r (read), and w (write) commands.

 The -p flag may be used to specify ed’s prompt string. The
 default is ": ". If prompting is not desired, a bare -p in the
 command line will turn it off.

 The -n flag indicates that you want to see line numbers
 prepended to each line of the buffer.

 The -v flag indicates that each command is to be echoed on
 error output as it is executed.

 Ed accepts commands from script files as well as a terminal.
 To do this, invoke ed and substitute the script file name for
 the standard input, as follows -

 ed [file] <script

 Commands to ed have a simple and regular structure: zero , one,
 or two line addresses followed by a single character command,
 possibly followed by parameters to the command. The structure
 is:

 [line],[line]command <parameters>

 The ’[line]’ specifies a line number or address in the buffer.
 Every command which requires addresses has default addresses,
 so the addresses can often be omitted.

 Line addresses may be formed from the following components:

 17 an integer number
 . the current line
 $ the last line in the buffer
 .+n "n" lines past the current line

 -1-

70

 Ed (1) 21-Apr-78 Ed (1)

 .-n "n" lines before the current line
 /<pattern>/ a forward context search
 \<pattern>\ a backward context search

 Line numbers may be separated by commas or semicolons; a
 semicolon sets the current line to the previous address before
 the next address is interpreted. This feature can be used to
 determine the starting line for forward and backward context
 searches ("/" and "\").

 REGULAR EXPRESSIONS

 Ed includes some additional capabilities such as the ability
 to search for patterns that match classes of characters, that
 match patterns only at particular positions on a line, or that
 match text of indefinite length. These pattern-seaching
 capabilities include a class of patterns called regular
 expressions. Regular expressions are used in addresses to
 specify lines and in the s command to specify a portion of a
 line which is to be replaced. To be able to express these more
 general patterns, some special characters (called
 metacharacters) are used. The regular expressions allowed by
 ed are constructed as follows:

 1. An ordinary character (not one of those discussed below) is
 a regular expression and matches that character.

 2. A percent "%" at the beginning of a regular expression
 matches the empty string at the beginning of a line.

 3. A dollar sign "$" at the end of a regular expression
 matches the null character at the end of a line.

 4. A question mark "?" matches any character except a newline
 character.

 5. A regular expression followed by an asterisk "*" matches
 any number of adjacent occurrences (including zero) of the
 regular expression it follows.

 6. A regular expression followed by a plus "+" matches one or
 more adjacent occurrences of the regular expression it
 follows (anchored closure).

 7. A string of characters enclosed in square brackets "[]"
 matches any character in the string but no others. If,
 however, the first character of the string is an exclamation
 point "!" the regular expression matches any character
 except the characters in the string (and the newline).

 -2-

71

 Ed (1) 21-Apr-78 Ed (1)

 8. A string of regular expressions enclosed in braces "{}" is
 known as a tagged pattern, and can be referenced positionally
 as $1...$9 in the replacement side of a substitute command.

 9. The concatenation of regular expressions is a regular
 expression which matches the concatenation of the strings
 matched by the components of the regular expression.

 10. The null regular expression standing alone is equivalent to
 the last regular expression encountered.

 If it is desired to use one of the regular expression
 metacharacters as an ordinary character, that character may be
 escaped by preceding it with an atsign "@".

 COMMANDS

 Following is a list of ed commands. Default addresses are
 shown in parentheses:

 (.)a
 <text>
 .
 The append command reads the given text and appends it
 after the addressed line. ’.’ is left on the last line
 input, if there were any, otherwise at the addressed
 line.

 (.)b[+/./-][<screensize>]
 The browse command is a shorthand command to print out a
 screenful of data. It has three basic forms, any of which
 may have a number("screensize") appended to it. The
 default screensize is 23. The b- form will print the
 screen of text preceding (and including) the addressed
 line; b. prints the screen centered on the addressed line;
 and b or b+ prints the current line and the screen after
 it. "." is left at the last line printed. If a
 screensize is specified, it becomes the default screensize
 for the rest of the editing session or until changed
 again.

 (.,.)c
 <text>
 .
 The change command deletes the addressed lines, then

 -3-

72

 Ed (1) 21-Apr-78 Ed (1)

 accepts input text which replaces these lines. ’.’ is
 left at the last line input, if there were any, otherwise
 at the first line not deleted.

 (.,.)d
 The delete command deletes the addressed lines from the
 buffer. The line originally AFTER the last line deleted
 becomes the current line; however, if the lines deleted
 were originally at the end, the new last line becomes the
 current line.

 e filename
 The edit command causes the entire contents of the buffer
 to be deleted and then the named file to be read in. ’.’
 is set to the last line of the buffer. The number of
 lines read is typed. ’Filename’ is remembered for
 possible use as a default file name in a subsequent r
 or w command. If changes have been made to the current
 file since the last write command, you will be asked to
 repeat the edit command.

 f filename
 The filename command prints the currently remembered file
 name. If ’filename’ is given, the currently remembered
 file name is changed to ’filename’.

 (1,$)g/regular expression/command
 In the global command, the given command is executed for
 every line which matches the given regular expression.
 Multiple commands may be executed by placing each on a
 preceding line and terminated each command except the last
 with an atsign ’@’.

 h
 The help command causes a synopsis of the commands to be
 displayed on standard output. If no help is available,
 that fact is noted on error output.

 (.)i
 <text>
 .
 The insert command inserts the given text BEFORE the
 addressed line. ’.’ is left at the last line input, or if
 there were none, at the addressed line. This command
 differs from the a command only in the placement of
 text.

 (.,.+1)j
 The join command joins the specified lines into one line.
 ’.’ is left at the new line created by the join. If the

 -4-

73

 Ed (1) 21-Apr-78 Ed (1)

 join would result in a line longer than MAXLINE
 characters, an error is reported and no changes are made
 to the file. A trailing p or l may be given on the join
 command to cause the merged line to be printed or listed.

 (.,.)k<address>
 The kopy command copies the range of lines after the line
 specified by <address>. The last of the copied lines
 becomes the current line.

 (.,.)l
 The list command prints the addressed lines, expanding all
 ASCII characters with values between 1 and 31 (^A - ^_) as
 the appropriate two character digraph, ^(character). The
 end of line is also indicated by a ’$’. ’.’ is left at
 the last line listed. The l command may be placed on
 the same line after any other command to cause listing of
 the last line affected by the command.

 (.,.)m<address>
 The move command repositions the addressed lines after the
 line specified by <address>. The last of the moved
 lines becomes the current line.

 n[+/-/=][value]
 This command manipulates the number register maintained by
 ed. A bare ‘n’ causes the current value of the register
 to be displayed. The ‘=’ function causes the number
 register to be set to the value specified, or to 0 if left
 null. The ‘+’ and ‘-’ functions cause the register to be
 incremented/decremented by ‘value’, or by 1 if value is
 null.

 (.,.)p
 The print command prints the addressed lines. ’.’ is left
 at the last line printed. The p command may be placed
 on the same line after any other command to cause
 printing of the last line affected by the command.

 q
 The quit command causes ed to exit. No automatic write of
 the file is done. If changes have been made to the
 current file since the last write command, you will be
 asked to repeat the quit command.

 (.)r filename
 The read command reads in the given file after the
 addressed line. If no file name is given, the remembered
 file name is used (see e and f commands). The
 remembered file name is not changed. Address ’0’ is legal

 -5-

74

 Ed (1) 21-Apr-78 Ed (1)

 for this command and causes the file to be read in at the
 beginning of the buffer. If the read is successful, the
 number of lines read is typed. ’.’ is left at the last
 line read in from the file.

 (.,.)s/regular expression/replacement/ or,
 (.,.)s/regular expression/replacement/g
 The substitute command searches each addressed line for an
 occurrence of the specified regular expression. On each
 line in which a match is found, the first occurrence of
 the expression is replaced by the replacement specified.
 If the global replacement indicator g appears after the
 command, all occurrences of the regular expression are
 replaced. Any character other than space or newline may
 be used instead of the slash ’/’ to delimit the regular
 expression and replacement. A question mark ’?’ is
 printed if the substitution fails on all addressed
 lines. ’.’ is left at the last line substituted.

 An ampersand ’&’ appearing in the replacement is replaced
 by the string matching the regular expression. (The
 special meaning of ’&’ in this context may be suppressed
 by preceding it by ’@’.)

 The strings ’$n’, ’$n+[d]’ and ’$n-[d]’ appearing in the
 replacement string cause the current value of the number
 register to be placed in the line. The optional trailing
 increment/decrement syntax cause the number register value
 to incremented/decremented by ‘d’ AFTER the value is
 placed in the string. If ‘d’ is omitted, a value of 1 is
 used.

 Lines may be split or merged by using the symbol ’@n’ to
 stand for the newline character at the end of a line.

 t [format arguments]
 This command allows one to ‘typeset’ the current buffer
 without leaving the editor. The current contents of the
 buffer are written to a scratch file, and ‘format’ is
 invoked with a command line consisting of the scratch file
 name plus any trailing arguments in the ‘t’ command line.
 For example:

 t +5 -7

 causes format to be invoked on the buffer and pages 5
 through 7 to be output. The value of ’.’ is not changed
 and the buffer is left intact.

 -6-

75

 Ed (1) 21-Apr-78 Ed (1)

 (.)u
 This causes the last line or range of lines which were
 deleted, either via a delete command or a substitute
 command, to be undeleted after the specified line. This
 is NOT an undo command. The last line or set of lines
 deleted are kept in a special place before recycling the
 line pointers, and may be recalled.

 (1,$)w [>[>]]filename
 The write command writes the addressed lines onto the
 given file. If the file does not exist, it is created.
 The remembered file name is not changed. If no file
 name is given, the remembered file name is used (see the
 e and f commands). ’.’ is left unchanged. If the
 command is successful, the number of lines written is
 typed. The form ‘>file’ is equivalent to ‘file’, while
 ‘>>file’ causes the lines to be appended to ‘file’.

 (1,$)x/regular expression/command
 The except command is the same as the global command
 except that the command is executed for every line
 except those matching the regular expression.

 (.)=
 The line number of the addressed line is typed. ’.’ is
 left unchanged.

 # comment
 The remainder of the line after the "#" is a comment and
 ignored by the editor. This allows ed scripts to be
 commented for future enlightenment.

 ^shell command
 The remainder of the line after the "^" is sent to the
 shell as a command. If there is nothing else on the line
 but a bare "^", the shell will be spawned, allowing a
 number of commands to be performed; when that shell quits,
 the terminal is returned to the editor. "." is left
 unchanged.

 (.+1)<carriage return>
 An address alone on a line causes the addressed line to be
 printed. A blank line alone is equivalent to ’.+1’ and
 thus is useful for stepping through text. A minus ’-’
 followed by a carriage return is equivalent to ’.-1’.

 <file[-v]
 The current input is stacked, ‘file’ is opened at READ

 -7-

76

 Ed (1) 21-Apr-78 Ed (1)

 access, and commands are read from ‘file’ until an EOF is
 encountered. If the optional -v flag is specified, each
 command is echoed on error output as it is executed. The
 normal search path is used to locate ‘file’, and a suffix
 of ".ed" is assumed. This facility is especially useful
 for canned procedures to be executed.

 (1,$)|shell command
 The remainder of the line after the "|" is spawned, with
 the lines specified fed to the command as its standard
 input. When the command completes, the terminal is
 returned to the editor. "." is left unchanged.

 %
 The percent of linepointers used is displayed. For
 in-memory versions of the editor, the percent of the
 in-memory character storage is also displayed.

 SUMMARY OF SPECIAL CHARACTERS

 The following are special characters used by the editor:

 Character Usage
 --------- -----

 ? Matches any character (except newline)

 % Indicates beginning of line

 $ Indicates end of line or end of file

 [...] Character class (any one of these characters)

 [!...] Negated character class (any character except these
 characters)

 {expression} tagged pattern

 * Closure (zero or more occurrences of previous
 pattern)

 + Anchored closure (one or more occurrences)

 @ Escaped character (e.g. @%, @[, @*)

 & Ditto, i.e. whatever was matched

 c1-c2 Range of characters between c1 and c2

 -8-

77

 Ed (1) 21-Apr-78 Ed (1)

 @f Formfeed character

 @l Linefeed character

 @n Specifies the newline character at the end of a line

 @r Carriage return character

 @t Specifies a tab character

 FILES
 A temporary file is used to hold the text being edited. Two
 other temporary files, known as $1 and $2, may be used as
 parameters for the r, w, and @ commands. For example, if the
 current date and time are desired at the top of the text
 buffer, perform the following:

 * ^date >$1
 * 0r $1

 As another example, if you wish to make a copy of lines 1,5
 after the last line in the buffer, do the following:

 * 1,5w $1
 * $r $1

 SEE ALSO
 The Unix command "ed" in the Unix manual
 The software tools tutorial "Edit"
 "Edit is for Beginners" by David A. Mosher (available from
 UC Berkeley Computer Science Library)
 "Edit: A Tutorial" (also available from the
 UC Berkeley Computer Science Library)
 "A Tutorial Introduction to the ED Text Editor" by B. W.
 Kernighan
 (UC Berkeley Computer Science Library)
 Kernighan and Plauger’s "Software Tools", pages 163-217

 DESCRIPTION
 The error message "?" is printed whenever an edit command
 fails or is not understood.

 AUTHORS
 Original code by Kernighan and Plauger with modifications by
 Debbie Scherrer, Dennis Hall, Joe Sventek and Dave Martin.

 BUGS/DEFICIENCIES
 At the present time the editor is still in a somewhat

 -9-

78

 Ed (1) 21-Apr-78 Ed (1)

 experimental There is a compiled-in limit to the maximum
 number of lines which a file being edited may contain. The
 line limit applies to all lines read in and subsequently
 changed. This problem can be partly alleviated by writing (w
 command) and re-editing (e command) the file after a lot of
 lines have been changed.

 There are several discrepancies between this editor and Unix’s
 ed. These include:

 1. Unix uses ’v’ instead of ’x’ for the except command.

 2. Unix uses ’^’ instead of ’%’ for the beginning-of-line
 character.

 3. Unix uses ’.’ instead of ’?’ to indicate a match of
 any character.

 4. Unix uses ’^’ instead of ’!’ to indicate exclusion of
 a character class.

 5. Unix uses ’\’ instead of ’@’ for the escape
 character.

 6. Unix uses ’?’ instead of ’\’ to delimit a backward
 search pattern.

 7. The Unix ’r’ command uses the last line of the file,
 instead of the current line, as the default address.

 8. The Unix editor prints the number of characters,
 rather than lines read or written when dealing with
 files.

 -10-

79

 Entab (1) 12-Aug-81 Entab (1)

 NAME
 Entab - convert spaces to tabs and spaces

 SYNOPSIS
 entab [<t1>...] [+<n>] [file] ...

 DESCRIPTION
 Entab replaces strings of blanks with equivalent tabs
 (control-i) and blanks. It can be used to read files and
 produce typewriter-like text, reducing file size. Tab stops
 are indicated by <t1> ... (default 8, 16, ...), while +<n>
 indicates tab stops every <n> columns. Thus the command

 entab 5 21 +5

 would insert tab stops at columns 5, 21, 26, etc. If no files
 are specified, the standard input is read. An isolated minus
 sign also indicates the standard input.

 SEE ALSO
 detab
 lpr

 AUTHORS
 Original from Kernighan & Plauger’s ’Software Tools’, with
 modifications by Dennis Hall.

 BUGS/DEFICIENCIES

 -1-

80

 Esh (1) 5-Oct-81 Esh (1)

 NAME
 Esh - extended shell, with intraline editing and history

 SYNOPSIS
 esh [-cdnvx] [file [arguments]]

 DESCRIPTION
 ‘esh’ is an extended version of ‘sh’ which incorporates several
 features designed to make it easier to use.

 L I N E E D I T I N G

 o Both backspace (^H) and RUBOUT (RUB, DEL) may be used to
 delete the last character typed.

 o ^U may be used to undo the current line - i.e. delete it
 and re-prompt for the line.

 o ^R may be used to re-type the line. This is useful when
 working on a hard-copy terminal, since character deletes
 are done with backspaces.

 o ^W deletes the last word, where words are defined as
 strings of non-blanks.

 o ^D causes the current working directory to be listed on
 the terminal, after which the line is re-displayed and you
 may continue input on the current line. This is useful
 when you get part way through a command, and then realize
 that the critical file name has slipped from recent
 memory.

 o ^F (or ESC) causes file recognition to be performed on the
 current pathname. If the filename can be extended
 unambiguously, it will be; otherwise, a list of files
 matching the current pattern are displayed, the line
 re-displayed, and you may continue input on the line.

 o ^A causes the previous command line to be retrieved and
 the cursor to be positioned at the end. This is useful
 for adding stages to pipelines, for example. ^A may also
 be used in conjunction with the history mechanism to
 append to previous commands.

 o ^E causes the intraline editor to be entered. If the
 cursor is at the beginning of a line the previous line is
 retrieved; otherwise the current line is edited. The
 editing commands are discussed below in the section on
 intraline editing.

 -1-

81

 Esh (1) 5-Oct-81 Esh (1)

 H I S T O R Y M E C H A N I S M

 A history of the commands input to ‘esh’ are maintained for
 each session. You may invoke special history manipulating
 functions by starting a command line with an exclamation mark
 (! - also known as a BANG) in column 1. If is is necessary to
 send a line starting with a BANG to the shell, lines starting
 with "@!" have the "@" stripped off, and the remainder of the
 line is given to the shell.

 Lines starting with BANG enable you to communicate with a
 miniature version of the editor ‘ed’. At any time, the last 25
 commands are available for recall and manipulation. The
 current line concept of ‘ed’ is supported, although the current
 line is ALWAYS the last command in the history. Legal history
 commands are:

 1. history display

 !h[istory] [n][l]

 This is the equivalent of a browse command in ‘ed’. !h
 will display the last screenful of commands, along with
 their line numbers. The screensize, which defaults to 22
 lines, may be changed by specifying a BLANK and a number
 following the !h[istory] string (!h 10, for example). The
 new screensize is remembered and used in all !h commands
 as the default screensize. Specifying a screensize larger
 than 25 has the effect of setting the size to 25. The
 optional trailing ‘l’ (list) will cause control characters
 in the commands to be displayed as ‘^<char>’, where <char>
 is the character one needs to type in conjunction with the
 CTRL key to generate the control character.

 !b[rowse] [n][l]

 This command is a synonym for history. It is included to
 increase the similiarity of function with the editor.

 2. history recall

 ![line_number][;line_number]...

 This command permits the recall of a command from the
 history for re-execution. The command so recalled is
 displayed and then passed on to the shell for execution.
 This command is then entered at the bottom of the
 history.

 -2-

82

 Esh (1) 5-Oct-81 Esh (1)

 Valid line_numbers are the same as those for the editor.
 For example, a line_number may be the number listed next
 to the command in the history display, a pattern of the
 form "\pattern[\]", which indicates a backward search in
 the 25 line history window, or a pattern of the form
 "/pattern[/]", indicating a search forward, wrapping to
 the start of the 25 line window. The trailing ’\’ or ’/’
 are optional when specifying a single pattern. The
 semi-colon syntax is the same as that in ‘ed’, indicating
 that the search for the second pattern is to start at the
 line where the first pattern was found.

 If the pattern specified was illegal, or a line matching
 the pattern could not be found, or an invalid line_number
 was specified, a comment is displayed

 # invalid line number

 and you are prompted for more input. The history is not
 modified in this case.

 All sequences of patterns resolve into a single line
 number. It is not possible to request a range of lines
 from the history.

 It should be noted that the line_numbering is completely
 regular with ‘ed’. In particular, "!" followed by nothing
 maps into a fetch of the current line (last command
 typed). See the writeup on ‘ed’ for more details on the
 specification of line_numbers.

 3. history recall and modification

 ![line_number]s/pat/repl[/[g]]

 Upon successfully recalling a command from the history, it
 may be modified before it is passed on to ‘esh’ for
 execution. This is performed with the ’s’ command, which
 is exactly the same as that for ‘ed’. The delimiters for
 ‘pat’ and ‘repl’ may be any character, the remembered
 pattern feature is available, and the trailing delimiter
 after the replacement pattern is optional. The optional
 trailing ‘g’ indicates substitution for all occurrences of
 ’pat’ in the line. See the ‘ed’ manual entry for more
 information on the substitute command.

 If the substitution fails for any reason, a comment is
 displayed

 -3-

83

 Esh (1) 5-Oct-81 Esh (1)

 # illegal substitution

 and you are prompted for more input. The history is not
 modified in this case.

 4. history archiving

 !w[rite] [>[>]]file

 This command permits you to archive (save) the entire
 transcript of activity to a file. It also passes an EOF
 to ‘esh’, which causes ‘esh’ to terminate execution. The
 commands

 !w file
 !w >file

 both cause ‘file’ to be overwritten with the transcript,
 while >>file causes the transcript to be appended to
 ‘file’.

 It should be noted that the !w command causes ALL of the
 input given to ‘esh’ in this session to be saved, not just
 the current 25 line window. It also passes an EOF to
 ‘esh’, which will terminate execution.

 5. history deletion

 !q[uit]
 ^Z

 These commands cause an EOF to be sent to ‘esh’ and the
 deletion of the log of activity.

 Lines consisting solely of a carriage return are NOT logged in
 the history. If you need to perform several edits on a command
 before having it executed, you can exploit the fact that lines
 beginning with a sharp (#) are comments to the shell. For
 example:

 !\%ed\s/%/#/ <make it a comment>
 !s/pat1/repl1/ <still a comment >
 . .
 . .
 . .
 !s/patn/repln/ <still a comment >
 !s/%#// <now execute it >

 -4-

84

 Esh (1) 5-Oct-81 Esh (1)

 All of the intermediate comment lines will be placed in the
 history, displacing other lines from the window which may
 possibly be needed. Of course, it may be simpler in such cases
 to just enter the command by hand.

 I N T R A L I N E E D I T I N G

 The intraline editing functions are a subset of those available
 in the "VI" screen editor from Berkeley. You are referred to
 the VI documentation for a tutorial introduction.

 The intraline editing "mode" is entered via ^E. Exactly what
 happens when the ^E is typed depends on what precedes it on the
 command line. If the ^E is the first character on a line, the
 previous command is retrieved and the cursor is positioned at
 the beginning of the line. If the line is a history reference
 (i.e. begins with a "!"), the referenced line is retrieved and
 the cursor is positioned at the beginning of the line. If the
 line is anything else, the cursor is positioned at the end of
 the line.

 Once in the intraline editor the following commands are
 allowed:

 Notes: ‘[n]’ indicates an optional integer count
 <text> input is terminated with ^Z or ESC

 MOVE cursor:

 [n]SPACE -> <n> positions
 [n]BS <- <n> positions
 [n]h <- <n> positions
 % <- to beginning of line (BOL)
 $ -> to end of line (EOL)
 [n]w -> <n> (non-alphanumeric) words
 [n]W -> <n> (non-blank) words
 [n]b <- <n> (non-alphanumeric) words
 [n]B <- <n> (non-blank) words
 [n]e -> to end of <n>th (non-alphanumeric) word
 [n]E -> to end of <n>th (non-blank) word

 [n]f<c> -> thru <n>th occurrence of char <c>
 [n]t<c> -> to <n>th occurrence of char <c>
 [n]F<c> <- thru <n>th occurrence of char <c>
 [n]T<c> <- to <n>th occurrence of char <c>
 [n]; Repeat last ‘f’, ‘t’, ‘F’, or ‘T’
 [n], Repeat last ‘f’, ‘t’, ‘F’, or ‘T’ in reverse

 -5-

85

 Esh (1) 5-Oct-81 Esh (1)

 INSERT or APPEND <text>:

 [n]i<text> Insert text before cursor
 [n]I<text> Insert text before beginning of line
 [n]a<text> Append text after cursor
 [n]A<text> Append text after end of line

 REPLACE or SUBSTITUTE <text> for character(s):
 --

 R<text> Replace (overlay) text on screen with <text>
 r<c> Replace current character with <c>

 [n]s<text> Substitute <n> characters with <text>

 CHANGE <text object> to <text>:

 [n]cw<text> next <n> (non-alphanumeric) words to <text>
 [n]cW<text> next <n> (non-blank) words to <text>
 [n]ce<text> thru end of <n>th (non-alphanumeric) word to <text>
 [n]cE<text> thru end of <n>th (non-blank) word to <text>
 c%<text> text from BOL thru cursor to <text>
 c$<text> text from cursor thru EOL to <text>
 C<text> Synonym for ‘c$’

 DELETE <text object>(s):

 [n]x <n> characters, starting at cursor
 [n]dSPACE <n> characters, starting at cursor
 [n]X previous <n> characters
 [n]dw next <n> (non-alphanumeric) words
 [n]dW next <n> (non-blank) words
 [n]db previous <n> (non-alphanumeric) words
 [n]dB previous <n> (non-blank) words
 [n]df<c> thru next <n>th occurrence of char <c>
 [n]dt<c> to next <n>th occurrence of char <c>
 [n]dF<c> thru prev <n>th occurrence of char <c>
 [n]dT<c> to prev <n>th occurrence of char <c>
 dd entire line
 d% from beginning of line to cursor, inclusive
 d$ from cursor to end of line, inclusive
 D Synonym for ‘d$’

 -6-

86

 Esh (1) 5-Oct-81 Esh (1)

 [n]. Repeat previous ‘delete’ command

 UNDO action of previous command(s):

 u Undo the last change to the line
 U Undo ALL commands; restore line to original state

 EXIT intra-line editor:

 ^Z Move cursor to EOL and exit intra-line edit
 ^E Move cursor to EOL and force RETURN
 RETURN Delete after cursor to EOL and execute command line

 The three methods of exiting the intraline editing mode are
 worthy of special mention. In particular you will usually exit
 with ^E rather than RETURN or ^Z, since the RETURN will chop
 off everything to the right of the cursor and ^Z will merely
 return to the line-gathering routine which invoked the
 intraline editor. Note that a ^E^E sequence may be used to
 repeat the previous command line.

 FILES

 SEE ALSO
 sh - command line interpreter

 DIAGNOSTICS
 # invalid line number
 # invalid substitution

 AUTHORS
 Editing features: Dave Martin
 History mechanism: Joe Sventek

 BUGS/DEFICIENCIES

 -7-

87

 Exist (1) 29-Oct-80 Exist (1)

 NAME
 Exist - check for the existence of a file

 SYNOPSIS
 exist file

 DESCRIPTION
 exist attempts to open the named file at READ access. If
 successful, it closes the file and returns the value of 1 in
 the DCL symbol $STATUS. Common uses are for system-wide login
 files for the invocation of your login.com file as in the
 following:

 $ exist:==$st_bin:exist
 $ exist login.com
 $ if $STATUS.eq.1 then @login

 FILES

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

88

 Expand (1) 15-Jan-79 Expand (1)

 NAME
 Expand - uncompress input files

 SYNOPSIS
 expand [file] ...

 DESCRIPTION
 Expand expands files previously compressed by ’cpress’. If no
 input files are given, or if the filename ’-’ appears, input
 will be read from the standard input.

 FILES

 SEE ALSO
 cpress

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Original from Kernighan & Plauger’s ’Software Tools’, with
 minor modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

89

 Fb (1) 28-May-80 Fb (1)

 NAME
 Fb - search blocks of lines for text patterns

 SYNOPSIS
 fb [-acix] [-ln] [-sexpr [-sexpr]] expr [expr] ...

 DESCRIPTION
 "Fb" (find block) searches blocks or groups of lines in a file
 for text patterns. It is similar to ’find’ except that if a
 pattern is found, the entire block of lines is copied to
 standard output, rather than simply the line in which the
 pattern occurred. Thus it is useful for searching mailing
 lists, bibliographies, and similar files where several lines
 are grouped together to form cohesive units.

 The search patterns may be any regular expression as described
 in the ’ed’ and ’find’ writeups.

 "Fb" assumes the blocks of lines are separated by an empty line
 or a line containing only blanks. When "fb" is called without
 any options, standard input is read and each line is checked to
 see if it matches any of the regular expressions given as
 arguments. If any matches are found, the entire block is
 printed on standard output.

 Other options include:

 -a Only print the block if ALL the arguments are found
 within it

 -x Only print the block if none of the arguments are
 found within it

 -c Only print a COUNT of the number of blocks found
 which match/don’t match the expressions

 -i Perform the pattern matches ignoring case.

 -sexpr Use ’expr’ as the block separator (instead of a blank
 or empty line). "Expr" can be a regular expression
 just as the search arguments can.

 If two "-sexpr" arguments are given, the first one is
 considered to be the pattern which starts a block
 (e.g. -ssubroutine) and the second is considered the
 pattern which ends a block (e.g. -send). If the -i
 flag has been seen before the -s flags, then the
 start and end expressions will be case-independent.

 -ln prints only the first ’n’ lines of the block; if the

 -1-

90

 Fb (1) 28-May-80 Fb (1)

 block contains less than ’n’ lines, the block is
 padded out with blank lines.

 Care should be taken when using the characters % $ [] ! * @
 and any shell characters in the text pattern. It is often
 necessary to enclose the entire substitution pattern in
 quotes.

 FILES
 A scratch file ("fbt") is used if the internal line buffer
 becomes full.

 SEE ALSO
 find
 ed

 For a complete description of regular expressions, see
 "Software Tools" pages 135-154.

 DIAGNOSTICS
 Error messages are given if:
 a) One of the patterns given is illegal
 b) Too many separators are given (2 are allowed)
 c) The maximum number of expressions is exceeded (9 are
 allowed)
 d) There are problems opening the scratch file (when the
 block line buffer fills up).

 If the following messages show up, something is dreadfully
 wrong:
 a) "Illegal default separator"
 b) "Block buffer overflow"

 AUTHORS
 Debbie Scherrer (Lawrence Berkeley Laboratory)

 BUGS/DEFICIENCIES
 An expression may not start with a minus sign (-).

 Regular expressions cannot span line boundaries.

 -2-

91

 Fc (1) 13-Dec-82 Fc (1)

 NAME
 Fc - fortran compiler

 SYNOPSIS
 fc [-cdmov] file ...

 DESCRIPTION
 fc is the fortran compiler callable from the software tools
 shell. It accepts the following types of arguments:

 1. Files whose names end in ’.f’ are assumed to be fortran
 source programs. They are compiled, and the object file
 is left on a file whose name is that of the source with
 ’.obj’ substituted for ’.f’.

 2. Other arguments (except for the flags listed in 3 below) are
 assumed to be either loader flags, or object files,
 typically created by an earlier fc run. These programs,
 together with the results of any compilations, are loaded
 (in the order given) to produce an executable program.

 3. The flags which affect the actions of the compiler are:

 -c suppress the loading phase, as does any compilation error
 in any routine

 -d do whatever is necessary to prepare the object files for
 the system-specific debugger. This flag is passed on to
 ‘ld’ if the -c switch is not specified.

 -m passed on to ‘ld’ to cause a load map to be produced.

 -o generates a fortran listing for ’file.f’ on ’file.l’

 -v verbose option; prints additional information about the
 compilation process

 SEE ALSO

 rc, the ratfor compiler, which provides a more pleasant
 programming dialect and environment

 ld, the loader, for descriptions of loader flags and process
 naming conventions

 AUTHORS
 Joe Sventek wrote the interface of fc to the DEC ForTran
 compiler.

 -1-

92

 Fc (1) 13-Dec-82 Fc (1)

 BUGS/DEFICIENCIES

 -2-

93

 Fd (1) 11-Mar-82 Fd (1)

 NAME
 Fd - fast directory list in sort order

 SYNOPSIS
 fd [path] ...

 DESCRIPTION
 ‘fd’ lists the files matching the specified pattern in sort
 order, packed in 5 columns across the page. The packing occurs
 regardless of whether standard output is a terminal or not, in
 contrast to the actions of ‘ls’. If no ‘path’ arguments are
 specified, all files in the current working directory are
 listed. The forms of ‘path’ are identical to those for ‘ls’.

 FILES

 SEE ALSO
 ls - general directory listing tool

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

94

 Field (1) 10-Jul-80 Field (1)

 NAME
 Field - manipulate fields of data

 SYNOPSIS
 field [-t[c] | fieldlist] outputformat [file] ...

 DESCRIPTION
 field is used to manipulate data kept in formatted fields. It
 selects data from certain fields of the input files and copies
 it to certain places in the standard output.

 The ’fieldlist’ parameter is used to describe the interesting
 columns on the input file. Fields are specified by naming the
 columns in which they occur (e.g. 5-10) or the columns in which
 they start and an indication of their length (e.g. 3+2, meaning
 a field which starts in column 3 and spans 2 columns). When
 specifying more than one field, separate the specs with commas
 (e.g. 5-10,16,72+8) Fields may overlap, and need not be in
 ascending numerical order (e.g. 1-25,10,3 is OK).

 If input fields do not fall in certain columns, but rather are
 separated by some character (such as a blank or a comma),
 describe the fields by using the ’-tc’ flag, replacing ’c’ with
 the appropriate separator (a tab character is the default).

 Once fields have been described with either the ’-tc’ flag or a
 fieldlist, they can be arranged on output by the ’outputformat’
 argument. This argument is actually a picture of what the
 output line should look like. Fields from input are referred
 to as $1, $2, $3, etc., referring to the first, second, third,
 etc. fields that were specified. (Up to 9 fields are allowed,
 plus the argument $0 which refers to the whole line.) These $n
 symbols are placed in the output format wherever that field
 should appear, surrounded by whatever characters desired. For
 example, an outputformat of:
 "$2 somewords $1"
 would produce an output line such as:
 field2 somewords field1

 If no input files are specified, or if the filename ’-’ is
 found, field will read from the standard input.

 DIAGNOSTICS
 illegal field specification
 The fieldlist specification was in error, probably because
 it contained letters or some other illegal characters

 SEE ALSO
 sedit

 -1-

95

 Field (1) 10-Jul-80 Field (1)

 AUTHORS
 David Hanson and friends (U. of Arizona)

 -2-

96

 Find (1) 3-Mar-78 Find (1)

 NAME
 Find - search a file for text patterns

 SYNOPSIS
 find [-acix] expression [expression] ...

 DESCRIPTION
 find searches the standard input file for lines matching the
 text patterns "expression" (up to 9 patterns may be specified)
 according to the matching criterion specified by the switches.
 (A text pattern is a subset of a "regular expression"--see the
 writeup on "ed" for a complete description of regular
 expressions.) Unless the -c option is specified, each matching
 line is copied to the standard output.

 By default, any line which matches any one of the expressions
 is considered a matching line. If the -a flag is specified,
 only lines which match all expressions in any order are
 considered to match. If the -x flag is specified, all lines
 which don’t satisfy the above criteria are considered matching
 lines. If the -c option is specified, matching lines are
 counted instead of being copied to the standard output, and the
 final count is written to the standard output. Finally, if the
 -i option is specified, the pattern matching becomes case
 insensitive.

 A text pattern consists of the following elements:

 c literal character
 ? any character except newline
 % beginning of line
 $ end of line (null string before newline)
 [...] character class (any one of these characters)
 [!...] negated character class (all but these characters)
 * closure (zero or more occurrences of previous pattern)
 + anchored closure (one or more occurrences of previous pattern)
 @c escaped character (e.g., @%, @[, @*)

 Any special meaning of characters in a text pattern is lost
 when escaped, inside [...], or for:

 % not at beginning
 $ not at end
 * at beginning
 + at beginning

 A character class consists of zero or more of the following
 elements, surrounded by [and]:

 c literal character, including [

 -1-

97

 Find (1) 3-Mar-78 Find (1)

 a-b range of characters (digits, lower or upper case)
 ! negated character class if at beginning
 @c escaped character (@! @- @ @])

 Special meaning of characters in a character class is lost
 when escaped or for

 ! not at beginning
 - at beginning or end

 An escape sequence consists of the character @ followed by a
 single character:

 @f formfeed
 @l linefeed
 @n newline
 @r carriage return
 @t tab
 @c c (including @)

 For a complete description, see "Software Tools" pages
 135-154. Care should be taken when using the characters % $ [
] ! * + @ and any shell characters in the text pattern. It is
 often necessary to enclose the entire substitution pattern in
 quotes.

 FILES
 none

 SEE ALSO
 tr, ed, ch and the UNIX grep command.
 xfind - extended find utility

 DIAGNOSTICS
 An error message is printed if one of the patterns given is
 illegal.

 AUTHORS
 Originally from Kernighan & Plauger’s "Software Tools", with
 major modifications by Joe Sventek.

 BUGS/DEFICIENCIES
 An expression may not start with a minus sign(-).

 -2-

98

 Form (1) 1-Mar-79 Form (1)

 NAME
 Form - produce form letter by prompting user for information

 SYNOPSIS
 form [-c] [+c] file ...

 DESCRIPTION
 Form reads input files and writes them to the standard output.
 Any time it encounters some characters surrounded by angle
 brackets (’<’ and ’>’) it prints the string between the
 characters as a prompt to the user. It then reads from the
 standard input and replaces the bracketed string with what was
 read.

 Normally only one line of input is accepted from the standard
 input. However, a response can be continued on succeeding
 lines by terminating each line to be continued with a minus
 (’-’).

 Multi-line input will also be accepted if the left-most
 bracketing character of the prompt is immediately followed by a
 minus (’-’) as in <-long prompt>. Upon detection of a prompt
 of this form, the input can only be terminated by typing a bare
 period (’.’) on a line, as in the editor. This fact is brought
 to the user’s attention when the prompt is displayed.

 The prompts inside the file may also span line boundaries if so
 desired.

 The user’s answers to prompts are remembered, so duplicate
 prompts are replaced without repeating the prompt to the user.

 If the standard input is not a terminal, no prompts are
 issued.

 The ’-c’ flag may be used to reset the initial character
 signalling a prompt. The character ’c’ then replaces the ’<’.

 The ’+c’ flag may be used to reset the terminating character of
 a prompt. The character ’c’ then replaces ’>’.

 It is possible to have ‘form’ ask for and fill in repeated
 fields in your document. If a prompt of the form

 <REPEAT label>

 is detected, all of the lines up to one consisting of <label>
 will be repeated. The number of repetitions is requested from
 the user by the prompt

 -1-

99

 Form (1) 1-Mar-79 Form (1)

 Count for REPEAT label

 REPEAT loops may be nested up to a depth of five (5). If if is
 necessary to specify a prompt <REPEAT> which does not have the
 special meaning of starting a loop, <\REPEAT> will have the
 leading ’\’ stripped off, and the prompt will be used
 normally.

 It is necessary to place the <REPEAT label> starting directive
 and the <label> terminating directive on lines by themselves.

 FILES
 Your terminal is opened at READ access.

 SEE ALSO
 The Unix form-letter tool

 DIAGNOSTICS
 If an input file cannot be opened, a message is printed and
 execution is terminated.

 A message is also printed if either the prompt or the response
 is too long for the tool’s internal buffer.

 AUTHORS
 Debbie Scherrer

 BUGS/DEFICIENCIES

 -2-

100

 Format (1) 23-Dec-81 Format (1)

 NAME
 Format - format (roff) text

 SYNOPSIS
 format [+n] [-n] [-s] [-pon] [file] ...

 DESCRIPTION
 Format formats text according to request lines embedded in the
 text of the given files or standard input if no files are
 given. If nonexistent filenames are encountered they are
 ignored. The optional flags are as follows:

 +n Start printing at the first page with number "n".

 -n Stop printing at the first page numbered higher than "n".

 -s Stop before each page, including the first (useful for
 paper manipulation). The prompt "Type return to begin a
 page" is given just once before the first page. For each
 page thereafter, the terminal bell is rung to indicate
 that another sheet of paper is needed.

 -pon Move the entire document "n" spaces (default=0) to the
 right ("page offset").

 Input consists of intermixed text lines, which contain
 information to be formatted, and request lines, which contain
 instructions about how to format the text lines. Request lines
 begin with a distinguishing "control character", normally a
 period.

 Output lines are automatically "filled"; that is, their right
 margins are justified, without regard to the format of the
 input text lines. (Right justification may be turned on and
 off through the use of the ".ju" and ".nj" commands, though.)
 Strings of embedded spaces are retained so that the output line
 will contain at least as many spaces between words as the input
 line. However, input lines beginning with a space are output
 without modification.

 Line "breaks" may be caused at specified places by certain
 commands, or by the appearance of an empty input line or an
 input line beginning with a space.

 Because of the nature of its output (backspace and tab
 characters and a fixed number of lines per page), it is
 generally necessary to have a tool developed especially for
 printing the output on the local printers. On most systems
 this is a combination of the tools ’os’ and ’detab’, plus some
 sort of page eject control of the printer. If such as tool

 -1-

101

 Format (1) 23-Dec-81 Format (1)

 exists, it should be described in Section 3 of this manual.

 The capabilities of format are specified in the attached
 Request Summary. Numerical values are denoted by "n", titles
 by "t", and single characters by "c". Numbers may be signed +
 or -, in which case they signify relative changes to a
 quantity; otherwise they signify an absolute setting. Missing
 "n" fields are ordinarily taken to be 1, missing "t" fields to
 be empty, and "c" fields to shut off the appropriate special
 interpretation.

 Running titles may appear at the top and bottom of every page.
 A title line consists of a line with three distinct fields: the
 first is text to be placed flush with the left margin, the
 second centered, and the third flush with the right margin.
 The first non-blank character in the title will be used as the
 delimiter to separate the three fields. Any "#" characters in
 a title are replaced by the current page number, and any "%"
 characters are replaced by the current date.

 The ".nr" defines number registers; there are 26 registers
 named a-z. The command ".nr x m" sets number register x to m;
 ".nr x +m" increments number register by m; and ".nr x -m"
 decrements x by m. The value of number register x is placed in
 the text by the appearance of @nx; a literal @ may be inserted
 using @@.

 Additional commands may be defined using ".de xx". For
 example,

 .de PG
 .sp
 .ti +3
 .en

 defines a "paragraph" command PG. Defined commands may also be
 invoked with arguments. Arguments are separated by blanks or
 tabs. Within the definition of a defined command, arguments
 are referenced using $1, $2, etc. There is a maximum of 9
 arguments. Omitted arguments default to the null string. $0
 references the command name itself. For example, the following
 version of the paragraph command uses the argument to determine
 the amount of indentation.

 .de PG
 .sp
 .ti +$1
 .en

 This command could be invoked by

 -2-

102

 Format (1) 23-Dec-81 Format (1)

 .PG 3

 to get the same effect as the previous version.

 The ".so file" command causes the contents of file to be
 inserted in place of the ".so" command; ".so" commands may be
 nested.

 FILES
 none

 SEE ALSO
 Kernighan & Plauger’s "Software Tools", pages 219-250
 whatever tool has been devised for printing formatted output
 The roff and nroff/troff UNIX commands
 The "nroff" and "troff" users manuals by Joseph F. Ossana, Bell
 Laboratories, Murray Hill, New Jersey

 DIAGNOSTICS
 invalid number register name
 names of number registers must be a single letter a-z

 missing name in command definition
 a macro was defined using the ’.de’ command, but no 2-letter
 name for it was given

 so commands nested too deeply
 the limit for nesting included source files is dependent
 upon the MAXOFILES definition in the standard symbols
 definition file

 too many characters pushed back
 the buffer holding input characters has been exceeded; its
 size is determined by the BUFSIZE definition in the source
 code

 AUTHORS
 Original version by Kernighan and Plauger, with modifications
 by David Hanson and friends (U. of Arizona), Joe Sventek and
 Debbie Scherrer (Lawrence Berkeley Laboratory)

 -3-

103

 Format (1) 23-Dec-81 Format (1)

 REQUEST SUMMARY

Request Initial Default Break Meaning

.## start of comment line

.bd n n=1 no boldface the next n lines

.bp n n=1 n=+1 yes begin new page and number it n

.br yes break

.cc c c=. c=. no control character becomes c

.ce n n=1 yes center the next n input lines

.cu n n=1 no continuously underline in the next n

.de xx no command xx; ends at .en

.ef t t="" t="" no foots on even pages are t

.eh t t="" t="" no heads on even pages are t

.en no terminate command definition

.fi yes yes begin filling output lines

.fo /l/c/r f="" f="" no foot titles are l(eft), c(enter), r(ight)

.he /l/c/r t="" t="" no head titles are l(eft), c(enter), r(ight)

.in n n=0 n=0 yes set left margin to column n+1

.ju yes yes no begin justifying filled lines

.ls n n=1 n=1 no set line spacing to n

.m1 n n=3 n=3 no space between top of page and head

.m2 n n=2 n=2 no space between head and text

.m3 n n=2 n=2 no space between text and foot

.m4 n n=3 n=3 no space between foot and bottom

.ne n n=0 y/n need n lines; break if new page

.nf no yes stop filling

.nj no no stop justifying

.nr x m x=0 m=0 no set number register x to m,
 -m, +m for decrement, increment
.of t t="" t="" no foots on odd pages are t
.oh t t="" t="" no heads on odd pages are t
.pl n n=66 n=66 no set page length to n lines
.po n n=0 n=0 no set page offset to n spaces
.rm n n=65 n=65 no set right margin to column n
.so file no switch input to file
.sp n n=1 yes space n lines, except at top of page
.st n n=0 yes space to line n from top; -n
 spaces to line n from bottom
.ti n n=0 yes temporarily indent next output
 line n spaces
.ul n n=1 no underline words in the next n
 input lines

 -4-

104

 Get (1) 14-Sep-81 Get (1)

 NAME
 Get - get generation from TCS file

 SYNOPSIS
 get [-h][-rM.N] historyfile

 DESCRIPTION
 Get retrieves earlier versions of text from "historyfile" as
 computed by DELTA.

 The possible flags are:

 (none) - The latest version of the file is
 retrieved.

 -h - Print out the history information associated
 with the versions. The dates, times, and user IDs
 will be retrieved, along with the comments added
 while performing the DELTAs.

 -rM.N - Retrieve the specified version M.N.

 The retrieved version of the file will be sent to the standard
 output. History information is always sent to the terminal.

 FILES

 SEE ALSO
 admin, delta

 DIAGNOSTICS
 usage: get [-h][-rM.N] historyfile
 Correct calling format is provided when called
 without arguments.

 Unexpected EOF on history-info scan.
 The source file does not contain the code which identifies it
 as a TCS history file. The code may be entered via
 the ADMIN command.

 Unexpected EOF on history-data scan.
 The file format has been tampered with and is no
 longer recognizable. Refer to a guru for repair.

 - missing from keyletter
 First argument is expected to qualify whether
 versions and/or histories are to be extracted.

 Illegal keyletter
 Only ’h’ and ’r’ are valid keys.

 -1-

105

 Get (1) 14-Sep-81 Get (1)

 Nonexistant revision level requested.
 The version number specified is not contained in the
 history. Try "get -h file.tcs" to view the versions
 available.

 Invalid history file
 The history file specifies impossible line-number
 correlations. Either out-of-sequence changes or line
 numbers in descending order.

 Cannot locate TCS history file.
 Could not find file supplied for historyfile.

 AUTHORS
 An Algorithm for Differential File Comparison by J.W.Hunt and
 M.D.McIlroy (BTL Computing Science Technical Report #41).
 Original code by Wil Baden; converted from MORTRAN by Dave
 Murray. Modifications and conversion to BTL-SCCS style by Neil
 Groundwater at ADI. The Source Code Control System was
 introduced by Marc J. Rochkind in the December, 1975, IEEE
 Transactions on Software Engineering.

 BUGS/DEFICIENCIES

 -2-

106

 Grep (1) 2-May-81 Grep (1)

 NAME
 Grep - search file[s] for a pattern

 SYNOPSIS
 grep [-chilx] expression [file] ...

 DESCRIPTION
 ‘grep’ searches the names files (or standard input if none are
 specified) for occurrences of the expression. The set of valid
 expressions are the same as those for ‘find’, ‘ch’ and ‘ed’.
 The manual entries for those tools may be consulted for full
 details. The output of ‘grep’ is dependent upon which switches
 are selected:

 None When one or more occurrences of the expression are found
 in a file, the file name is displayed, with each line in
 which the expression occurs listed below the file name.

 -c Only the number of matching lines in each file is
 displayed.

 -h Do not display the file names.

 -i Make comparisons case insensitive.

 -l Only the names of files which contain matching lines are
 displayed, one per line.

 -x Display (or count) only those lines which do NOT contain
 the expression.

 FILES
 none

 SEE ALSO
 find - find groups of expressions in a file
 ch - globally change expressions within a file
 ed - text editor

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

107

 Hsh (1) 2-May-81 Hsh (1)

 NAME
 Hsh - shell with history and editing functions

 SYNOPSIS
 hsh [-cdnvx] [file [arguments]]

 DESCRIPTION
 ‘hsh’ is identical to ‘sh’ with the exception that a history is
 kept of commands typed; recall and editing functions on the
 history are permitted and described below. Consult the manual
 entry for ‘sh’ for more information on the common functions.

 A history of the commands input to ‘hsh’ are maintained for
 each session. The user may invoke special history manipulating
 functions by starting a command line with an exclamation mark
 (! - also known as a BANG) in column 1. If is is necessary to
 send a line starting with a BANG to the shell, lines starting
 with "@!" have the "@" stripped off, and the remainder of the
 line is given to the shell.

 Lines starting with BANG enable the user to communicate with a
 miniature version of the editor ‘ed’. At any time, the last 25
 commands are available for recall and manipulation. The
 current line concept of ‘ed’ is supported, although the current
 line is ALWAYS the last command in the history. Legal history
 commands are:

 1. history display

 !h[istory] [n][l]

 This is the equivalent of a browse command in ‘ed’. !h
 will display the last screenful of commands, along with
 their line numbers. The screensize, which defaults to 22
 lines, may be changed by specifying a BLANK and a number
 following the !h[istory] string (!h 10, for example). The
 new screensize is remembered and used in all !h commands
 as the default screensize. Specifying a screensize larger
 than 25 has the effect of setting the size to 25. The
 optional trailing ‘l’ (list) will cause control characters
 in the commands to be displayed as ‘^<char>’, where <char>
 is the character one needs to type in conjunction with the
 CTRL key to generate the control character.

 !b[rowse] [n][l]

 This command is a synonym for history. It is included to
 increase the similiarity of function with the editor.

 -1-

108

 Hsh (1) 2-May-81 Hsh (1)

 2. history recall

 ![line_number][;line_number]...

 This command permits the recall of a command from the
 history for re-execution. The command so recalled is
 displayed to the user and then passed on to the shell for
 execution. This command is then entered at the bottom of
 the history.

 Valid line_numbers are the same as those for the editor.
 For example, a line_number may be the number listed next
 to the command in the history display, a pattern of the
 form "\pattern[\]", which indicates a backward search in
 the 25 line history window, or a pattern of the form
 "/pattern[/]", indicating a search forward, wrapping to
 the start of the 25 line window. The trailing ’\’ or ’/’
 are optional when specifying a single pattern. The
 semi-colon syntax is the same as that in ‘ed’, indicating
 that the search for the second pattern is to start at the
 line where the first pattern was found.

 If the pattern specified was illegal, or a line matching
 the pattern could not be found, or an invalid line_number
 was specified, a comment is displayed to the user

 # invalid line number

 and the user is prompted for more input. The history is
 not modified in this case.

 All sequences of patterns resolve into a single line
 number. It is not possible to request a range of lines
 from the history.

 It should be noted that the line_numbering is completely
 regular with ‘ed’. In particular, "!" followed by nothing
 maps into a fetch of the current line (last command
 typed). See the writeup on ‘ed’ for more details on the
 specification of line_numbers.

 3. history recall and modification

 ![line_number]s/pat/repl[/[g]]

 Upon successfully recalling a command from the history, it
 may be modified before it is passed on to ‘hsh’ for
 execution. This is performed with the ’s’ command, which
 is exactly the same as that for ‘ed’. The delimiters for

 -2-

109

 Hsh (1) 2-May-81 Hsh (1)

 ‘pat’ and ‘repl’ may be any character, the remembered
 pattern feature is available, and the trailing delimiter
 after the replacement pattern is optional. The optional
 trailing ’g’ indicates substitution for all occurrences of
 ’pat’ in the line. See the ‘ed’ manual entry for more
 information on the substitute command.

 If the substitution fails for any reason, a comment is
 displayed to the user

 # illegal substitution

 and the user is prompted for more input. The history is
 not modified in this case.

 4. history archiving

 !w[rite] [>[>]]file

 This command permits the user to archive (save) the entire
 transcript of activity to a file. It also passes an EOF
 to ‘hsh’, which causes ‘hsh’ to terminate execution. The
 commands

 !w file
 !w >file

 both cause ‘file’ to be overwritten with the transcript,
 while >>file causes the transcript to be appended to
 ‘file’.

 It should be noted that the !w command causes ALL of the
 input given to ‘hsh’ in this session to be saved, not just
 the current 25 line window. It also passes an EOF to
 ‘hsh’, which will terminate execution.

 5. history deletion

 !q[uit]
 ^Z

 These commands cause an EOF to be sent to ‘hsh’ and the
 deletion of the log of activity.

 -3-

110

 Hsh (1) 2-May-81 Hsh (1)

 Lines consisting solely of a carriage return are NOT logged in
 the history. If the user needs to perform several edits on a
 command before having it executed, he can exploit the fact that
 lines beginning with a sharp (#) are comments to the shell.
 For example:

 !\%ed\s/%/#/ <make it a comment>
 !s/pat1/repl1/ <still a comment >
 . .
 . .
 . .
 !s/patn/repln/ <still a comment >
 !s/%#// <now execute it >

 All of the intermediate comment lines will be placed in the
 history, displacing other lines from the window which may
 possibly be needed. Of course, it may be simpler in such cases
 to just enter the command by hand.

 FILES
 Creates a scratch file ˜tmp/pid.log for the command
 transcript.

 SEE ALSO
 sh - command line interpreter
 esh - shell with file recognition and RAW tty I/O
 ed - text editor

 DIAGNOSTICS
 # invalid line number
 # invalid substitution

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES
 Due to address space limitations on some systems (RSX-11M, for
 example), the history shell will not have support for the
 following shell internal commands:

 alias ask param unalias unparam source

 For those systems where the ‘source’ command is supported,
 commands read from alternate input files (login.sh, ‘source’ed
 files) are NOT logged in the history.

 -4-

111

 Incl (1) 10-Jul-78 Incl (1)

 NAME
 Incl - expand included files

 SYNOPSIS
 incl [file] ...

 DESCRIPTION
 Include copies the input files to the standard output.
 Whenever an input line begins with

 include filename

 the entire contents of filename will be copied to the standard
 output. If no input files are specified, the standard input is
 copied. An included file may include further includes.
 Multiple input files are allowed. Include is used to bring in
 much-used routines, common declarations or definitions, thus
 insuring use of the same version by all programs.

 FILES
 none

 SEE ALSO
 Kernighan and Plauger’s "Software Tools", pages 74-77.
 The software tools "ratfor" tutorial

 DIAGNOSTICS
 includes nested too deeply
 The depth of included files allowed is dependent upon the
 maximum number of open files allowed in the following
 manner:
 MAXOFILES - 3

 filename: can’t open
 File could not be located or maximum number of opened
 files was exceeded.

 AUTHORS
 Original code by Kernighan and Plauger in "Software Tools",
 with modifications by Ardith Kenney.

 BUGS/DEFICIENCIES
 The depth of included files allowed is dependent upon the
 maximum number of open files allowed by the implementor of the
 primitives.

 -1-

112

 Isam (1) 29-Oct-80 Isam (1)

 NAME
 Isam - generate index for pseudo-indexed-sequential access

 SYNOPSIS
 isam [-d<dif>] [-w<width>] [-j<l/r>]

 DESCRIPTION
 isam is used to generate an index for a text file such that the
 index may be used later to permit indexed-sequential access to
 the file. isam reads every ‘dif’th line (default is 1) from
 the standard input, noting its disk address with a call to
 note. It uses getwrd to retrieve the first "word" from the
 line and uses this as the primary key to the record. This key
 is then output to standard output in a field ‘width’ wide
 (default is 25) and justified according to the -j switch
 (default left). The two-word address from note is then output
 as decimal integers before the index record is flushed.

 FILES

 SEE ALSO
 spell - spelling error finder; uses an isam-generated index
 asam - generate index for archives

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

113

 Kill (1) 8-Jun-79 Kill (1)

 NAME
 Kill - kill a running process

 SYNOPSIS
 kill processid [processid ...]

 DESCRIPTION
 kill kills the processes specified by the processid’s in the
 command line. The processid’s are those provided by the shell
 when it spawns a background process.

 FILES
 none

 SEE ALSO
 sh - shell (command line interpreter)

 DIAGNOSTICS
 if the process specified by the processid does not exist, an
 error message will be displayed on error output.

 AUTHORS
 Joe Sventek (VAX)

 BUGS/DEFICIENCIES

 -1-

114

 Kwic (1) 15-Jan-79 Kwic (1)

 NAME
 Kwic - make keyword in context index

 SYNOPSIS
 kwic [file] ...

 DESCRIPTION
 kwic rotates lines from the input files so that each word in
 the sentence appears at the beginning of a line, with a special
 character marking the original position of the end of the
 line. The output from kwic is typically sorted with ’sort’ and
 then unrotated with ’unrot’ to produce a keyword-in-context
 index.

 If no input files are given, or if the filename ’-’ appears,
 lines will be read from standard input.

 FILES

 SEE ALSO
 unrot; sort

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Original from Kernighan and Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

115

 Lam (1) 30-Jul-79 Lam (1)

 NAME
 Lam - laminate files

 SYNOPSIS
 lam { -string | file } ...

 DESCRIPTION
 Lam laminates the named files to the standard output. That is,
 the first output line is the result of concatenating the first
 lines of each file, and so on. If the files are different
 lengths, null lines are used for the missing lines in the
 shorter files.

 The "-string" arguments are used to place strings in each
 output line. Each "string" is placed in the output lines at
 the point it appears in the argument list. For example,

 lam -file1: foo1 "-, file2:" foo2

 results in output lines that look like

 file1: a line from foo1, file2: a line from foo2

 The escape sequences described in find (and change) are valid
 in "string" arguments. Thus

 lam foo1 -@n foo2

 results in the lines from foo1 and foo2 being interleaved.

 Files and string specifications may appear in any order in the
 argument list.

 If no file arguments are given, or if the file "-" is
 specified, lam reads the standard input.

 FILES
 none

 SEE ALSO
 comm, tail

 DIAGNOSTICS
 too many arguments
 The maximum number of command line arguments allowed has
 been exceeded. It is set by the MAXARGS definition in the
 source code.

 too many strings
 The max number of characters in a string has been exceeded.

 -1-

116

 Lam (1) 30-Jul-79 Lam (1)

 It is set by the MAXBUF definition in the source code.

 output buffer exceeded
 The size of the output line buffer has been exceeded. It is
 set by the MAXOBUF definition in the source code.

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES

 -2-

117

 Lcnt (1) 11-Jan-79 Lcnt (1)

 NAME
 Lcnt - line count

 SYNOPSIS
 lcnt [file] ...

 DESCRIPTION
 lcnt counts the number of lines of text in the named input
 files, or the standard input if no files are given or the
 filename ’-’ appears. A line is zero or more characters
 terminated by a NEWLINE marker.

 lcnt could also be implemented as a shell script file:

 tr ’!@n’ | ccnt

 FILES

 SEE ALSO
 ccnt; wcnt; the Unix command ’wc’

 DIAGNOSTICS
 A message is printed if an input file could not be opened;
 processing is terminated.

 AUTHORS
 Original from Kernighan and Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

118

 Ld (1) 13-Dec-82 Ld (1)

 NAME
 Ld - loader

 SYNOPSIS
 ld [-dmv] [-l[libname]] [-ptaskname] [-xs] name ...

 DESCRIPTION
 ld links together the named modules in the order given,
 searches the system libraries to resolve global references and
 generates an executable process.

 ld understands the following flags:

 -d causes ‘ld’ to do whatever is necessary to incorporate a
 system-specific debugger into the image.

 -l signifies that the filename concatenated to the flag is a
 library name. -l alone stands for the ratfor system
 library, ‘rlib’. The default extension for a library file
 is ‘.olb’. A library is searched when its name is
 encountered, so the placement of -l is significant. If the
 ratfor system library is not explicitly mentioned, it is
 searched after all other files have been linked. The
 fortran system library is searched at the very end.

 -m causes ‘ld’ to do whatever is necessary to generate a
 system-specific load map.

 -p signifies that the file name concatenated to the flag is to
 be the process name. If this option is not specified, the
 process name is determined in one of two ways:

 1. The first non-library file name (eg. format.obj) is
 found, and the file’s extension is replaced by ‘.exe’
 (format.exe). This is then the resulting process name.

 2. Failing 1 (implying that all files listed in the argument
 list are libraries), the process image is placed on the
 file a.out, overwriting the previous contents of that
 file.

 -v verbose option; output additional information about the
 loading process.

 -x operating system specific loader options are appended to the
 ‘-x’ flag. Legal sub-obtions are:

 s indicates that linkage to the ratfor shared library image
 RLIBSHARE is NOT to be performed. This permits images to
 be generated for use on systems where the shared library

 -1-

119

 Ld (1) 13-Dec-82 Ld (1)

 image will not reside, as well as permitting debugging of
 new versions of the routines which are in the shared
 library image.

 SEE ALSO
 rc, fc

 AUTHORS
 Joe Sventek wrote the interface of ld to the DEC linker.

 BUGS/DEFICIENCIES

 -2-

120

 Ll (1) 15-Sep-78 Ll (1)

 NAME
 Ll - print line lengths

 SYNOPSIS
 ll [file] ...

 DESCRIPTION
 ll prints the lengths of the shortest and longest lines in the
 named files. The name "-" may be used to refer to the standard
 input. If no files are given, ll reads the standard input.

 NEWLINE characters are not counted as part of the length of a
 line.

 FILES
 none

 DIAGNOSTICS
 A message is issued if a named file could not be opened.

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES

 -1-

121

 Lpr (1) 29-Oct-80 Lpr (1)

 NAME
 Lpr - queue file to printer

 SYNOPSIS
 lpr [-n] [-l] [-v] [-c<num of copies>] [file]...

 DESCRIPTION
 lpr takes the named files (or standard input if none are
 specified) and queues copies of them to the printer. All
 overstriking and underlining in the documents which have been
 achieved via backspaces are converted to the appropriate
 overstrike lines to drive the printer. The switches have the
 following meaning:

 -n narrow paper queue. These files are queued to the printer
 with forms=1.
 -l label queue. These files are queued to the printer with
 forms=6.
 -v verbose. The job number of the print job will be
 displayed on the screen at the successful queueing of the
 file.
 -cn number of copies. The number of copies of the file to be
 queued may be specified this way. The default is 1 copy.

 The default behavior of lpr is to queue the files with
 forms=0. In all cases, the print queue to which the symbiont
 messages are directed is sys$print. If you do not maintain
 this queue, you will have to modify the source code for lpr.
 The routine to change is lpr.w/lpr.r/dispoz.

 FILES

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

122

 Ls (1) 27-Jul-81 Ls (1)

 NAME
 Ls - list contents of directory

 SYNOPSIS
 ls [-1dhnrtv] [-fstring] [pathname] ...

 DESCRIPTION
 Ls lists information about each file argument. When no
 argument is given, the default directory is listed. The file
 arguments may include any of the legal regular expressions
 described in the man entry for the editor, with the added
 feature that the comparisons will be case insensitive. By
 default, the files are listed in the order in which they are
 found in the directory. There are seven options:

 -1 force single column output to the terminal. The default is
 multi-column output to the terminal, single to a disk file.
 -d print only directory files found in this directory
 -h print a header at the top of verbose listings
 -n sort the directory by name
 -v list in verbose format
 -t sort by time modified (oldest first)
 -r reverse the sense of the sort

 -f use ‘string’ to specify the output format as follows:

 b size of file in blocks (normally 512 characters)

 c size of file in characters

 m modification date and time (dd-mmm-yy hh:mm:ss)

 n filename

 o file owner’s username

 p protection codes (oooo|gggg|wwww)

 t file type (asc|bin|dir)

 The ‘b’, ‘c’, ‘n’ and ‘o’ options accept an integer prefix
 which specifies the field width to be used.

 The verbose option formats its output as if you had
 specified "-f17n p m 6b o" as a format string.

 It is necessary to surround the string (including the ‘-f’)
 with quotes if it contains any BLANKs or TABs.

 -1-

123

 Ls (1) 27-Jul-81 Ls (1)

 EXAMPLES
 The following command will cause all of the files which contain
 the string tst anywhere in the file name to be deleted:

 % ls tst | args rm

 FILES
 lstemp1, lstemp2

 AUTHORS
 Ls was written by Joe Sventek. The ‘-f’ option was added by
 Dave Martin.

 SEE ALSO
 ed - text editor for description of regular expressions
 args - argument exploder
 d - directory lister (with different default format)
 fd - fast directory lister in sort order

 -2-

124

 Macro (1) 20-May-78 Macro (1)

 NAME
 Macro - process macro definitions

 SYNOPSIS
 macro [file] ...

 DESCRIPTION
 Macro reads the source file(s) and writes onto the standard
 output a new file with the macro definitions deleted and the
 macro references expanded. If no file names are specified,
 the standard input is read.

 Macros are generally used to extend some underlying language to
 perform a translation from one language to another; that is, a
 macro processor allows one to define symbolic constants so
 that subsequent occurrences of the constant are replaced by
 the defining string of characters. The general format is:

 define(name,replacement text)

 All subsequent occurrences of "name" in the file will be
 replaced by "replacement text". Blanks are significant and
 may occur only inside the replacement text. Upper and lower
 case letters are also significant. Nesting of definitions is
 allowed, as is recursion. The definition may be more than one
 line long.

 An elementary example of a macro is:

 define(EOF,-1)

 Thereafter, all occurrences of "EOF" in the file would be
 replaced by "-1".

 Macros with arguments may also be specified. Any occurrence
 in the replacement text of "$n", where n is between 1 and 9,
 will be replaced by the nth argument when the macro is
 actually called. For example,

 define(copen,$3 = open($1,$2)
 if ($3 == ERR)
 call cant($1))

 would define a macro which, when called by "copen(name, READ,
 fd)" would expand into:

 fd = open(name,READ)
 if (fd == ERR)
 call cant(name)

 -1-

125

 Macro (1) 20-May-78 Macro (1)

 If a macro definition asks for an argument that wasn’t
 supplied, the "$n" will be ignored.

 Macros can be nested, and any macros encountered during
 argument collection are expanded immediately--unless they are
 surrounded by brackets "[]". That is, any input surrounded by
 [and] is left absolutely alone, except that one level of [
 and] is stripped off. Thus it is possible to write the macro
 "d" as

 define(d,[define($1,$2)])

 The replacement text for "d", protected by the brackets is
 literally "define($1,$2)" so one could say

 d(a,bc)

 and be assured that "a" would be defined to be "bc". Brackets
 must also be used when it is desired to redefine an
 identifier:

 define(x,y)
 define(x,z)

 would define "y" in the second line, instead of redefining
 "x". To avoid redefining "y", the operation must be expressed
 as

 define(x,y)
 define([x],z)

 The macro processor also includes a conditional test, with the
 built-in function "ifelse". The input

 ifelse(a,b,c,d)

 compares "a" and "b" as character strings. If they are the
 same, "c" is pushed back onto the input; if they differ, "d"
 is pushed back. As a simple example,

 define(compare,[ifelse($1,$2,yes,no)])

 defines "compare" as a two-argument macro returning "yes" if
 its arguments are the same, and "no" if they are not. The
 brackets prevent the "ifelse" from being evaluated too soon.

 Another built-in function available is "incr". "incr(x)"
 converts the string "x" to a number, adds one to it, and
 returns that as its replacement text (as a character string).
 "x" had better be numeric, or the results may be

 -2-

126

 Macro (1) 20-May-78 Macro (1)

 undesireable. "incr" can be used for tasks like

 define(MAXCARD,80)
 define(MAXLINE,[incr(MAXCARD)])

 which makes two parameters with values 80 and 81.

 The third built-in function available in the macro processor
 is a function to take substrings of strings.

 substr(s, m, n)

 produces the substring of "s" which starts at position "m"
 (with origin one), of length "n". If "n" is omitted or too
 big, the rest of the string is used, while if "m" is out of
 range the result is a null string. For example,

 substr(abc, 2, 1)

 results in "b",

 substr(abc, 2)

 results in "bc", and

 substr(abc,4)

 is empty.

 The last built-in function available in the macro processor is
 one to perform simple arithmetic functions:

 arith(operand1,op,operand2)

 where the operation specified by ’op’ may be + (add), -
 (subtract), * (multiply), or / (divide). Negative numbers are
 not handled yet. Thus,

 define(add,[arith($1,+,$2)])
 add(5,3)

 would produce the result ’8’.

 As a final example, here is a macro which computes the length
 of a character string:

 define(len,[ifelse($1,,0,[incr(len(substr($1,2)))])])

 Note the recursion, which is perfectly permissible. The outer

 -3-

127

 Macro (1) 20-May-78 Macro (1)

 layer of brackets prevents all evaluation as the definition is
 being copied into an internal table. The inner layer prevents
 the "incr" construction from being done as the arguments of
 the "ifelse" are collected. The value of a macro call
 "len(abc)" would be 3.

 FILES
 none

 SEE ALSO
 Kernighan and Plauger’s "Software Tools", pages 251-283

 DIAGNOSTICS
 arg stack overflow
 The maximum number of total arguments has been exceeded.
 Currently this is 100.

 call stack overflow
 The maximum level of nesting of definitions has been
 exceeded. Currently this is 130.

 EOF in string
 An end-of-file has been encountered before a bracketed
 string has been terminated.

 evaluation stack overflow
 The total number of characters for name, definition, and
 arguments has been exceeded. Currently this is 500.

 unexpected EOF
 An end-of-file was reached before the macro definition was
 terminated.

 filename: cant open
 For some reason, the file specified could not be opened.
 This is an unlikely error to occur; if it does show up it
 probably indicates a problem with the low-level primitives
 being used by the system.

 AUTHORS
 From "Software Tools" by Kernighan and Plauger, with minor
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES
 There can be no space between the "define" and the
 left-parenthesis following it.

 Keywords (e.g. define, ifelse, etc.) in the input file must be
 surrounded by brackets if they are not part of a
 macro--otherwise they will be stripped out by the processor.

 -4-

128

 Macro (1) 20-May-78 Macro (1)

 Likewise, if brackets are desired anywhere in the input file
 other than in a macro, they must be surrounded by brackets
 themselves.

 The error messages generated by the ratfor compiler when
 processing macros do not seem to show up in this processor.
 Examples are "definition too long", "missing comma in define",
 and "non-alphanumeric name".

 -5-

129

 Man (1) 24-Jun-82 Man (1)

 NAME
 Man - display section of users manual

 SYNOPSIS
 man [-<pagelen>] [-s<section>] [-a] [name] ...

 DESCRIPTION
 man locates and displays the manual entries for the particular
 utility or function names found in the argument list. If no
 names are supplied, a list of those entries known to man in the
 section specified is displayed. If no section name is supplied
 (i.e. "-s") a list of available manual sections is displayed.

 The manual as delivered consists of four sections:

 1 The writeups for the utilities are contained here. This is
 the default section if none is specified. A valid synonym
 for ‘1’ is ‘cmd’.

 2 The writeups for the primitive functions are contained here.
 The primitive functions are those which represent the virtual
 system calls for the Software Tools Virtual Machine. A valid
 synonym for ‘2’ is ‘prim’.

 3 The writeups for the portable library functions are found in
 this section. Routines for manipulating archive modules,
 in-memory storage, push-back stacks, pattern matching, and
 many others are described here. Many times a problem which
 you are trying to solve has been solved before, with the code
 for the solution appearing in the library. A valid synonym
 for ‘3’ is ‘lib’.

 4 Primers for using various utilities and function libraries
 appear here. A valid synonym for ‘4’ is ‘primer’.

 In addition, site-dependent sections can be added by creating
 the necessary known files in ˜man. The section on FILES below
 describes the structure of the known files.

 By default, man will search through all sections for an entry
 describing ‘name’; the sections are searched in the order
 specified in the file ‘˜man/mpath’. The first entry found
 along this search path is displayed; the remainder of the
 sections are scanned to see if other entries describing ‘name’
 can be found. If more are found, a note describing the section
 containing the additional entry is displayed to the user.

 If the -a flag is specified, all of the manual entries for the
 particular section are displayed on standard output. If no
 section is specified, this results in the display of the entire

 -1-

130

 Man (1) 24-Jun-82 Man (1)

 manual.

 When displaying to the terminal, excess white space is removed
 from the entries. The output is also paged when to a terminal,
 with the default page length being 22 lines. This value may be
 changed through the use of the ’-<pagelen>’ option. Specifying
 a pagelength of 0 turns the paging off. When in paging mode,
 the user will be asked if the next screenful of the current
 entry is desired. In addition, if more than one entry was
 requested, the user is asked if the next entry is desired.

 EXAMPLES
 To get a listing of all manual sections available:

 man -s

 To get a listing of all entries in section (1):

 man -s1

 To get the entry for the "format" utility:

 man format

 To get the primer for the "ed" text editor:

 man -sprimer ed

 To get the entry for the library routines "scopy" and "strcpy":

 man scopy strcpy

 FILES
 Accesses the known files for each section in the ˜man
 directory.

 Each section consists of two files in ˜man:

 * s<section-name> is an archive of the ‘format’ output files
 for each entry, with each archive module having the name of
 the entry. For example, s1 has the entries for the commands,
 with the entry for ‘ar’ being ar.

 * i<section-name> is an index of the s-file above generated by
 ‘asam’. This index must be sorted, and is generated by

 asam <s<section-name> | sort >i<section-name>

 There is no restriction of ‘<section-name>’ to integers, such
 that if one wishes to create a local man section, simply

 -2-

131

 Man (1) 24-Jun-82 Man (1)

 archive the formatted entries in ˜man/slocal and generate the
 index in ˜man/slocal. The section name ‘local’ should then be
 added to the search path file, ‘˜man/mpath’.

 SEE ALSO
 The tools ’intro’ and ’apropos’; the Unix command ’man’

 DIAGNOSTICS
 A message is printed if the entry specified by ’name’ cannot be
 located.

 AUTHORS
 Joe Sventek. The "bare -s" option was added by Dave Martin.

 -3-

132

 Mcol (1) 1-Oct-78 Mcol (1)

 NAME
 Mcol - multicolumn formatting

 SYNOPSIS
 mcol [-cn] [-ln] [-wn] [-gn] [-dn] [file] ...

 DESCRIPTION
 mcol reads the named files and formats them into multicolumn
 output on the standard output. If the filename "-" is given,
 or no files are specified, the standard input is read.

 The options are as follows.

 -cn Format the output into "n" columns. Default is 2.

 -ln Set the output page size to "n". Mcol produces its output
 in pages, but does not place separators between the pages
 on the assumption that some subsequent processor will do
 that. (The default page length is 55.)

 -wn Set the column width to "n" characters. Lines longer than
 "n" characters are truncated. (The default column width
 is 60.)

 -gn Set the "gutter" width to "n". The gutter is the white
 space between columns. (The default gutter width is 8.)

 -dn Assume output is to be printed on a display terminal. The
 column size is set to "n" characters and the page size is
 set to 24 lines. The number of columns and gutter width
 are computed to maximize the amount of information on a
 single screen. If "n" is omitted, 10 is used, which is
 useful for displaying lists of file names.

 FILES
 none

 SEE ALSO

 DIAGNOSTICS
 invalid column count
 invalid page size
 invalid column width
 invalid gutter width
 The value of one of the option flags is invalid or exceeds
 the limitations of mcol.

 ignoring invalid flag
 A command argument option flag was given which mcol didn’t

 -1-

133

 Mcol (1) 1-Oct-78 Mcol (1)

 recognize.

 insufficient buffer space
 Mcol could not buffer an entire page. This is usually the
 result of options that specify a large page size or many
 columns. The buffer size is set by the MAXBUF definition in
 the source code.

 too many lines
 The number of lines per page times the number of columns
 exceeded mcol’s line buffer space. The maximum number of
 lines allowed is set by the MAXPTR definition in the source
 code.

 BUGS/DEFICIENCIES

 AUTHORS
 Original by David Hanson and friends (U. of Arizona), with
 modifications by Debbie Scherrer (LBL).

 -2-

134

 MkDir (1) 14-Nov-81 MkDir (1)

 NAME
 MkDir - create directories

 SYNOPSIS
 mkdir dirname ...

 DESCRIPTION
 MkDir creates the specified directories.

 EXAMPLES
 mkdir verbs

 would create a subdirectory named ‘‘verbs’’ in the current
 directory.

 mkdir ˜usr/src

 would create a subdirectory named ‘‘src’’ in directory
 ‘‘˜usr’’.

 FILES
 none

 IMPLEMENTATION
 MkDir spawns the DCL "create/directory" command, with all the
 default options.

 SEE ALSO
 The UNIX command ‘‘mkdir’’.

 DIAGNOSTICS
 ? Can’t spawn ‘‘create/directory’’.

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 None of the DCL options may be specified.

 -1-

135

 Mv (1) 11-Jan-79 Mv (1)

 NAME
 Mv - move (or rename) a file

 SYNOPSIS
 mv old new

 DESCRIPTION
 mv changes the name of ‘old’ to ‘new’. If ‘new’ already
 exists, it is removed before ‘old’ is renamed. On networks or
 other systems where a simple rename is impossible, mv copies
 the file and then deletes the original.

 FILES
 none

 SEE ALSO
 The Unix command ’mv’

 DIAGNOSTICS
 A message is printed if ‘old’ does not exist.

 AUTHORS
 Joe Sventek, Debbie Scherrer

 BUGS/DEFICIENCIES
 Mv may only be used with ASCII files on many systems.

 -1-

136

 Number (1) 21-Oct-81 Number (1)

 NAME
 Number - number lines

 SYNOPSIS
 number [-f] [-z] [-i<n>] [-s<n>] [-d<n>] [-] file ...

 DESCRIPTION
 Number copies its input to STDOUT, adding line numbers to each
 line. The options are:

 - read input from STDIN.

 -f (Fortran) start numbers in column 73. Default is 1.
 The number of digits is set to 8 ("-d8").

 -z zero-fill numbers. Default is blank-fill.

 -i<n> set line number increment to <n>.

 -s<n> start numbering with <n>.

 -d<n> make numbers <n> digits long. default is 7.

 FILES
 none

 DIAGNOSTICS
 none

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 Tabs are assumed to be 8 spaces wide starting in column 9.
 The -f option assumes lines are less than 73 columns long.

 -1-

137

 Os (1) 16-Jan-79 Os (1)

 NAME
 Os - convert backspaces into multiple lines for "printers"

 SYNOPSIS
 os [file] ...

 DESCRIPTION
 os (overstrike) looks for backspaces in the files specified
 and generates a sequence of print lines with carriage control
 codes to reproduce the effect of the backspaces.

 If no files are given, or the filename ’-’ appears, input is
 taken from the standard input.

 FILES

 SEE ALSO
 lpr - queue file to line printer
 ul - process overstrikes for "terminals"

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Original from Kernighan & Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

138

 Pack (1) 29-Oct-80 Pack (1)

 NAME
 Pack - pack words into columns

 SYNOPSIS
 pack [-n] [file] ...

 DESCRIPTION
 pack takes the words (groups of characters separated by blanks
 or tabs) found on the specified files (standard input if none
 are specified) and outputs them to standard output in columns,
 16 spaces wide, ordered from left to right. The characters
 used to achieve the separation of columns are TAB characters,
 such that those terminals which support hardware tabs can be
 driven efficiently. By default, five (5) columns are
 generated; this value can be overridden through the
 specification of the -n switch, where n is a decimal number.

 FILES

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

139

 Pl (1) 18-Sep-79 Pl (1)

 NAME
 Pl - print specified lines/pages in a file

 SYNOPSIS
 pl [-pn] numbers [file] ...

 DESCRIPTION
 pl prints the specified lines from each of the named files on
 the standard output. If no files are given, or if the name "-"
 is specified, pl reads the standard input.

 The "numbers" argument is a list of line numbers separated by
 commas, e.g.

 pl 4,5,26,55 foo bazrat

 prints lines 4, 5, 26, and 55 in file "foo" and "bazrat". The
 line numbers may be given in any order. Repeated numbers cause
 the specified lines to be printed once for each occurrence of
 the line number. Line number ranges can also be given, e.g.
 4-15.

 The "-p" option causes pl to print pages instead of lines, and
 the numbers refer to page numbers. If an integer follows the
 "-p", it is taken as the page size; the default is 23.
 Repeated numbers cause the specified pages to be printed once
 for each occurrence of the page number.

 DIAGNOSTICS
 bad page size
 Invalid page size specified after ’-p’ flag
 bad number
 Invalid number given as argument
 bad range
 Invalid range given as argument
 too many numbers
 Number of lines/pages specified overflowed the buffer.
 Maximum number of lines is determined by the MAXLINES
 definition in the source code.
 ignoring invalid argument
 An invalid flag was specified. Processing continues.

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES
 There is a limit to the size of pages which can be buffered.
 This is set by the MAXBUF definition in the source code.

 -1-

140

 Pr (1) 15-Jan-77 Pr (1)

 NAME
 Pr - paginate files to standard output

 SYNOPSIS
 pr [-l<n>] [file] ...

 DESCRIPTION
 pr paginates the named files to standard output. Each file is
 printed as a sequence of pages. Each page is 60 lines long,
 including a 3-line header and no footer. This gives 57 lines of
 text. The default format matches the printer control used on
 most line printers. The header includes the file name,
 possibly the date, and the page number.

 If the file ’-’ is specified, or no file names are given, the
 standard input is read.

 Option flags include:
 -l<n> Sets the page length to ’<n>’. Default page
 length is 60.

 SEE ALSO
 os, detab, mcol, format, cat

 DIAGNOSTICS
 ignoring invalid argument
 An option flag was specified which pr did not understand

 A message is printed if an input file could not be opened

 AUTHORS
 Original from the Kernighan-Plauger ’Software Tools’ book, with
 modifications by David Hanson and friends (U. of Arizona) and
 Debbie Scherrer (LBL)

 BUGS/DEFICIENCIES
 The header and trailer spacing can be modified by adjusting
 the MARGIN1, MARGIN2, and BMARGIN definitions in the source
 code.

 -1-

141

 Printf (1) 27-Nov-82 Printf (1)

 NAME
 Printf - justify fields of data in fixed-width fields

 SYNOPSIS
 printf [-t[c] | fieldlist] outputformat [file] ...

 DESCRIPTION
 printf is used to manipulate data kept in formatted fields. It
 selects data from certain fields of the input files and copies
 it into fixed-width fields, with justification, in the standard
 output.

 The ’fieldlist’ parameter is used to describe the interesting
 columns on the input file. Fields are specified by naming the
 columns in which they occur (e.g. 5-10) or the columns in which
 they start and an indication of their length (e.g. 3+2, meaning
 a field which starts in column 3 and spans 2 columns). When
 specifying more than one field, separate the specs with commas
 (e.g. 5-10,16,72+8) Fields may overlap, and need not be in
 ascending numerical order (e.g. 1-25,10,3 is OK).

 If input fields do not fall in certain columns, but rather are
 separated by some character (such as a blank or a comma),
 describe the fields by using the ’-tc’ flag, replacing ’c’ with
 the appropriate separator (a tab character is the default).

 Once fields have been described with either the ’-tc’ flag or a
 fieldlist, they can be arranged on output by the ’outputformat’
 argument. This argument is actually a picture of what the
 output line should look like. Fields from the input are
 referred to as "%[-][n]s", with the following meanings for the
 optional characters:

 n The next input field is to be output in a field ‘n’
 characters wide, right justified in the field.

 - The input field is to be left justified in the specified
 field.

 If a percent character is to be output, it can be specified
 either as %% or as @%. A percent character followed by
 anything other than % or [-][n]s is a syntax error in the
 outputformat argument. For example, an outputformat of:
 "%-10s is equivalent to %s"
 would produce an output line such as:
 field1 is equivalent to field2

 If no input files are specified, or if the filename ’-’ is
 found, field will read from the standard input.

 -1-

142

 Printf (1) 27-Nov-82 Printf (1)

 If re-ordering of a set of fields before output is necessary,
 the ‘field’ tool can be used prior to ‘printf’:

 field "$3@t$2@t$1" | printf "%-15s | %-15s | %s" >outfile

 DIAGNOSTICS
 Field specification error.
 The fieldlist specification was in error, probably because
 it contained letters or some other illegal characters

 Incorrectly formatted string.
 The outputformat specification contains an illegal %
 contruct.

 Too many fields for internal storage.
 The fieldlist specification or the outputformat
 specification provides for more fields than internal
 storage can handle. The program can be recompiled with a
 larger value for the symbol MAXFIELDS.

 SEE ALSO
 sedit(1), field(1)

 AUTHORS
 Joe Sventek

 -2-

143

 Prlabl (1) 11-Mar-82 Prlabl (1)

 NAME
 Prlabl - format labels for printing

 SYNOPSIS
 prlabl [-width] <label_file

 DESCRIPTION
 ‘prlabl’ formats addresses (or other block data) for printing
 on sticky label forms. The default behavior assumes that each
 label is 9 lines wide, which corresponds to 1.5 inch labels on
 a 6 pitch printer or terminal. If the ‘-width’ option is
 specified, ‘width’ is taken to be the number of lines per
 label. The code forces a blank line on either side of each
 block of data, thus limiting the data blocks to ({width | 9} -
 2) lines. If a particular data block contains more than this
 limit, the extra lines are discarded. The data block will be
 centered in the window.

 The format of the address files is quite simple: all contiguous
 non-blank lines between blank lines are considered a single
 block. Any lines in the block which start with the character
 ’#’ are considered to be comments, and excluded from the block
 when printing.

 FILES

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

144

 Ps (1) 29-Oct-80 Ps (1)

 NAME
 Ps - list process status information

 SYNOPSIS
 ps [-ahx] [-tttname] [-uusername]

 DESCRIPTION
 ps lists information concerning processes in the system. The
 processes are listed in order by process id, with all child
 processes appearing in heirarchical order immediately below
 their respective parents. The default is to list all processes
 active at the invoking terminal. The switches cause other
 information to be displayed as follows:

 -a list information on processes associated with all logged
 in terminals on the system
 -h place header labels above the columns of information
 -x list information on all processes in the system
 -tname list information on all processes associated with
 terminals which contain the pattern ‘name’.
 -uname list information on all processes owned by users whose
 names contain the pattern ‘name’.

 The display consists of the following information:

 1. The terminal name
 2. The owning user name
 3. The process name
 4. The de-noised image name being run by the process, or
 blank for DCL.
 5. The total elapsed CPU time of the process
 6. The process id

 FILES

 SEE ALSO
 who - who is on the system

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

145

 Pstat (1) 8-Jun-79 Pstat (1)

 NAME
 Pstat - determine status of process

 SYNOPSIS
 pstat processid [processid ...]

 DESCRIPTION
 pstat determines the status of processes specified by the
 processid’s in the command line. It returns either active or
 completed for each process. The processid’s are those returned
 by the shell when a background process is spawned.

 FILES
 none

 SEE ALSO
 sh - shell (command line interpreter)

 DIAGNOSTICS

 AUTHORS
 Joe Sventek (VAX)

 BUGS/DEFICIENCIES

 -1-

146

 Pwd (1) 12-Aug-81 Pwd (1)

 NAME
 Pwd - print working directory name on standard output

 SYNOPSIS
 pwd [-l]

 DESCRIPTION
 pwd prints the pathname of the working (current default)
 directory. If the -l switch is present, the current working
 directory is printed out in the local parlance. This path name
 is of the form

 /device/directory

 For example,

 /u/usrlib

 is equivalent to

 u:[usrlib]

 on VMS

 SEE ALSO
 cd - change working directory

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

147

 Rar (1) 2-May-81 Rar (1)

 NAME
 Rar - rearrange archive

 SYNOPSIS
 rar [-cv] archive

 DESCRIPTION
 ‘rar’ permits the rearrangement of the modules of an archive,
 ‘archive’. ‘rar’ opens ‘archive’ and notes the names and
 starting address of each module. It then reads the names of
 modules from standard input and outputs each module so
 indicated to standard output. Upon detecting an EOF on
 standard input, any modules not yet output are written out in
 the order found in the original archive.

 Switches:

 -c Suppresses the output of modules not specified on the
 standard input. This permits the selection of only a
 subset of the original archive’s modules.

 -v Print the name of each module on error output after it has
 been successfully output to the standard output.

 Example of use:

 Suppose that you wish to create a new version (newarch) of
 an archive (oldarch) with all of the modules sorted by
 name. The following shell command will suffice:

 ar t oldarch | sort | rar -v oldarch >newarch

 FILES
 none

 SEE ALSO
 ar - archive file maintainer

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

148

 Ratfor (1) 21-Dec-81 Ratfor (1)

 NAME
 Ratfor - RatFor preprocessor

 SYNOPSIS
 ratp1 [-n] [file] ... | ratp2 >outfile

 ratfor [-n] [file] ... >outfile

 rat77 [-n] [file] ... >outfile

 DESCRIPTION
 Ratfor translates the ratfor programs in the named files into
 Fortran. If no input files are given, or the filename ’-’
 appears, the standard input will be read.

 Unless the ’-n’ flag has been specified, a file containing
 general purpose software tools definitions (e.g. EOF, EOS,
 etc.) will be automatically opened and processed before any of
 the files specified are read.

 Syntax:

 Ratfor has the following syntax:
 prog: stmt
 prog stmt
 stmt: if (expr) stmt
 if (expr) stmt else stmt
 while (expr) stmt
 repeat stmt
 repeat stmt until (expr)
 for (init clause; test expr; incr clause) stmt
 do expr stmt
 do n expr stmt
 break
 break n
 next
 next n
 return (expr)
 switch (expr) {
 case expr: stmt
 ...
 default: stmt
 }
 digits stmt
 { prog } or [prog]
 other
 other: anything unrecognizable (i.e. fortran)
 clause: other
 clause, other

 -1-

149

 Ratfor (1) 21-Dec-81 Ratfor (1)

 where ’stmt’ is any Fortran or Ratfor statement. A statement
 is terminated by an end-of-line or a semicolon.

 Character Translation:

 The following character translations are performed:
 < .lt.
 <= .le.
 == .eq.
 != .ne. ^= .ne. ˜= .ne.
 >= .ge.
 > .gt.
 | .or.
 & .and.
 ! .not. ^ .not. ˜ .not.

 Included files:

 The statement

 include file or
 include "file"

 will insert the contents of the specified file into the ratfor
 input in place of the ’include’ statement. Quotes must
 surround the file name if it contains characters other than
 alphanumerics or underscores.

 Macro Definitions:

 The statement

 define(name,replacement text)

 defines ’name’ as a macro which will be replaced with the
 indicated text when encountered in the source files. Any
 occurrences of the strings ’$n’ in the replacement text, where
 1 <= n <= 9, will be replaced with the nth argument when the
 macro is actually invoked. For example:

 define(bump, $1 = $1 + 1)

 will cause the source line

 bump(i)

 to be expanded into

 -2-

150

 Ratfor (1) 21-Dec-81 Ratfor (1)

 i = i + 1

 The names of macros may contain letters, digits and underline
 characters, but must start with a letter. Upper case is not
 equivalent to lower case in macro names.

 The replacement text is copied directly into the lookup table
 with no intepretation of the arguments, which differs from the
 procedure used in the macro utility. This "deferred
 evaluation" has the effect of eliminating the need for
 bracketing strings to get them through the macro processor
 unchanged. A side effect of the deferred evaluation is that
 defined names cannot be forced through the processor - i.e. the
 string "define" will never be output from the preprocessor.
 The inequivalence of upper and lower case in macro names may be
 used in this case to force the name of a user defined macro
 onto the output - i.e. if the user has defined a macro named
 mymac, the replacement text may contain the string MYMAC, which
 is not defined, and will pass through the processor.

 (For compatibility, an "mdefine" macro call has been included
 which interprets definitions before stacking them, as does the
 macro tool. When using this version, use "$(" and "$)" to
 indicate deferred evaluation, rather than the "[" and "]" used
 by the macro tool.)

 In addition to define, several other built-in macros are
 provided:

 arith(x,op,y) performs the "integer" arithmetic specified by
 op (+,-,*,/,**) on the two numeric operands
 and returns the result as its replacement.
 incr(x) converts the string x to a number, adds one to
 it, and returns the value as its replacement
 (as a character string).
 ifelse(a,b,c,d) compares a and b as character strings; if they
 are the same, c is pushed back onto the input,
 else d is pushed back.
 substr(s,m,n) produces the substring of s which starts at
 position m (with origin one), of length n. If
 n is omitted or too big, the rest of the
 string is used, while if m is out of range the
 result is a null string.
 lentok(str) pushes the length of the argument (# of
 characters) onto the input as a character
 string.
 undefine(sym) removes the definition for the symbol ‘sym’,
 if it is defined.

 -3-

151

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Note: the statement

 define name text

 may also be used, but will not always perform correctly for
 macros with parameters or multi-line replacement text. The
 functional form is preferred.

 Conditional Preprocessing:

 The statements

 ifdef(macro) ifnotdef(macro)
 . .
 . .
 . .
 elsedef elsedef
 . .
 . .
 . .
 enddef enddef

 conditionalize the preprocessing upon whether the macro has
 been previously defined or not. The ‘elsedef’ portions of the
 conditionals may be omitted, if desired. The conditional
 bodies may be nested, up to 10 levels deep.

 String Declarations:

 The statements

 string name "character string" or
 string name(size) "character string"

 declare ’name’ to be a character array long enough to
 accomodate the ascii codes for the given character string, one
 per array element. The array is then filled by data
 statements. The last word of ’name’ is initialized to the
 symbolic parameter EOS, and indicates the end of a string. EOS
 must be defined either in the standard definitions file or by
 the user. If a size is given, name is declared to be a
 character array of ’size’ elements. The normal escape
 sequences are supported in strings; in addition, to embed a
 quote (") in the string, one must type @".

 -4-

152

 Ratfor (1) 21-Dec-81 Ratfor (1)

 String Literals:

 The processing of in-line quoted strings ("..." appearing
 outside of the scope of a ‘string’ declaration) is dependent
 upon which version of the processor you are using:

 ratfor "str" is converted to 3Hstr. This action is identical
 to previous versions of the pre-processor.

 ratp1 "str" is converted to an appropriate declaration for a
 ‘character’ array, and the appropriate data statements
 are output. The variable name will be of the form
 STNNNZ, where NNN is replaced by a rotating sequence
 number. The array will be declared long enough to place
 the value of EOS in the last element, just as for the
 ‘string’ declaration. Since these declarations are
 output immediately, the resulting FORTRAN code must be
 run through the program ‘ratp2’, which will reorder the
 code to be ANSI-66 compliant.

 rat77 "str" is converted to the FORTRAN-77 constant ’str’. It
 is expected that this version of the preprocessor will
 NOT automatically load the standard symbols file, thus
 permitting the use of ‘rat77’ to preprocess F77 code.

 Regardless of the version used, string literals can be
 continued across line boundaries by ending the line to be
 continued with an underline. The underline is not included as
 part of the literal. Leading blanks and tabs on the next line
 are ignored. If a quote (") is to be embedded in the string,
 it must be escaped, as in

 "a quote (@") in a string"

 In addition, the normal escape sequences are supported in the
 ‘ratp1’ version.

 Character Literals:

 Character constants of the form ’c’ are converted to the
 decimal integer representation of that character in the ASCII
 character set. For example:

 call putc(’!’)

 would become

 -5-

153

 Ratfor (1) 21-Dec-81 Ratfor (1)

 call putc(33)

 The normal escape characters are supported as character
 constants. For example

 ’@n’

 is a NEWLINE (10).

 Note that this capability pre-empts the use of apostrophes for
 delimiting string literals. Attempts to pre-process programs
 utilitizing apostrophes for string literals will generate
 syntax errors of the form:

 missing apostrophe in character literal

 An utility ‘ratfix’ is available for quickly correcting such
 code.

 Integer Constants:

 Integer constants in bases other than decimal may be specified
 as n%dddd... where ’n’ is a decimal number indicating the base
 and ’dddd...’ are digits in that base. For bases > 10, letters
 are used for digits above 9. Examples include: 8%77 (=63),
 16%2ff (=767), 2%0010011 (=19). The number is converted to the
 equivalent decimal value using multiplication; this may cause
 sign problems if the number has too many digits.

 Lines and Continuation:

 Input is free-format; that is, statements may appear anywhere
 on a line, and the end of the line is generally considered the
 end of the statement. However, lines ending in special
 characters such as comma, +, -, and * are assumed to be
 continued on the next line. An exception to this rule is
 within a condition; the line is assumed to be continued if the
 condition does not fit on one line. Explicit continuation is
 indicated by ending a line with an underline character (_).
 The underline character is not copied to the output file.

 Comments:

 Comments are preceded by ’#’ signs and may appear anywhere in
 the code.

 -6-

154

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Literal (unprocessed) Lines:

 Lines can be passed through ratfor without being processed by
 putting a percent "%" as the first character on the line. The
 percent will be removed and the line shifted one position to
 the left, but otherwise will be output without change. Macro
 invocations, long names, etc., appearing in the line will not
 be processed.

 Literal (unprocessed) Character Sequences:

 Sequences of characters can be passed through the processor,
 thus avoiding processing, by surrounding then with the tokens
 %(...%). The surrounding %[()] tokens will be removed and the
 character sequence will be output without change. Macro
 invocations, long names, etc. appearing in the character
 sequence will NOT be processed.

 Long Variable Name Processing:

 An optional capability available in the pre-processor, which
 may be enabled by your local tools support individual, is the
 capability of converting long variable names (those consisting
 of more than 6 alpha-numerics, embedded underscores, or both)
 to 6 character ANSI-66 compliant variable names. If this
 option is available, and has been used in a pre-processing run,
 a sequence of FORTRAN comment statements are output at the end
 of the generated FORTRAN code, with the mapping of long names
 to generated names.

 It should be noted that this mapping is not deterministic
 across separate compilations; as such, if ‘get_next_input’ is
 compiled and placed in a library, source invocations of
 ‘get_next_input’ would not map into the identical 6-character
 name. To permit users to preload the long name table with the
 names of external routines, the ‘linkage’ statement may be
 used:

 linkage long_name external_name

 The pair of names is entered into the table of known long
 variable names, preventing any generated names for local long
 variables from colliding with the external name. The
 programmer must provide accurate information via this statement
 to permit access to routines with "long variable names" across
 compilations.

 If long variable name processing has not been enabled for your

 -7-

155

 Ratfor (1) 21-Dec-81 Ratfor (1)

 site, linkage is synonymous with define.

 NOTE: since long variable name processing is optional, its use
 will generate code that is inherently non-portable to sites not
 desiring this capability. Users wishing to write portable code
 should avoid long variable names.

 CHANGES
 This ratfor preprocessor differs from the original (as released
 by Kernighan and Plauger) in the following ways:

 The code has been rewritten and reorganized.

 Hash tables have been added for increased efficiency in
 searching for macro definitions and Ratfor keywords.

 The ’string’ declaration has been included.

 The define processor has been augmented to support macros with
 arguments.

 Conditional preprocessing upon the definition (or lack therof)
 of a symbol has been included.

 Many extraneous gotos have been avoided.

 Blanks have been included in the output for increased
 readability.

 Multi-level ’break’ and ’next’ statements have been included.

 The Fortran ’DO’ is allowed, as well as the ratfor one.

 The capability of specifying integer constants in bases other
 than decimal has been added.

 Underscores have been allowed in names.

 The ’define’ syntax has been expanded to include the form:
 define name value

 The ’return(value)’ feature has been added.

 Quoted file names following ’include’ statements have been
 added to allow for special characters in file names.

 A method for allowing lines to pass through un-processed has

 -8-

156

 Ratfor (1) 21-Dec-81 Ratfor (1)

 been added.

 The ’switch’ control statement has been included.

 Continuation lines have been implemented.

 Brackets have been allowed to replace braces (but NOT ’$(’ and
 ’$)’)

 Character constants are now supported.

 Groups of FORTRAN statements are permitted in the init and
 re-init clauses of the for statement.

 A method for allowing character sequences to pass through
 un-processed has been added.

 An ‘undefine’ command has been added to permit removal of
 symbol definitions.

 Three types of literal character string processing are now
 possible. The default action permanently eliminates the usage
 of Hollerith constants in portable tools.

 Long variable names processing can now be enabled as a
 site-dependent option.

 FILES
 A generalized definition file (e.g. ’ratdef’) is automatically
 opened and read.

 SEE ALSO
 Kernighan and Plauger’s "Software Tools"
 Kernighan’s "RATFOR - A Preprocessor for a Rational Fortran"
 The Unix command rc in the Unix Manual
 The tools ’incl’ and ’macro’

 DIAGNOSTICS
 (The errors marked with asterisk ’*’ are fatal; all others are
 simply warning messages.)

 * arg stack overflow
 The argument stack for the macro processor has been
 exceeded. The size of the stack is determined by the
 symbol ARGSIZE in the source definitions file.
 o arith error
 An error occurred while evaluating the built-in macro,
 ‘arith’.
 * buffer overflow

 -9-

157

 Ratfor (1) 21-Dec-81 Ratfor (1)

 One of the preprocessor’s internal buffers overflowed,
 possibly, but not necessarily, because the string buffers
 were exceeded. The definition SBUFSIZE in the
 preprocessor symbols file determines the size of the
 string buffers.
 * call stack overflow
 The call stack (used to store call frames) in the macro
 processor has been exceeded. The definition CALLSIZE in
 the source definition file determines the size of this
 stack.
 * cannot make identifier unique
 All attempts to generate an unique short variable name for
 the long variable name being processed failed. This
 message will only be seen if the long variable name
 processing has been enabled.
 o cannot open standard definitions file
 The special file containing general purpose ratfor
 definitions could not be opened, possibly because it did
 not exist or the user did not have access to the directory
 on which it resides.
 o can’t open include
 File to be included could not be located, the user did not
 have privilege to access it, or the file could not be
 opened due to some problem in the local primitives.
 o conditional processing still active at EOF
 A sufficient number of "enddef" directives have not been
 encountered before detecting EOF on the input file.
 * Conditionals nested too deeply
 The stack for nested conditionals has overflowed. The
 size of the stack is specified by the value of
 COND_STACK_DEPTH defined in the preprocessor symbols
 file.
 * definition too long
 The number of characters in the name to be defined
 exceeded Ratfor’s internal array size. The size is
 defined by the MAXTOK definition in the preprocessor
 symbols file.
 o duplicate case label
 Two case labels with identical values were detected.
 * EOF in string
 The macro processor detected an EOF in the current input
 file while evaluating a macro.
 * evaluation stack overflow
 The evaluation stack for the macro processor has been
 exceeded. This stack’s size is determined by the symbol
 EVALSIZE in the source definition file.
 * for clause too long
 The internal buffer used to hold the clauses for the ’for’
 statement was exceeded. Size of this buffer is determined
 by the MAXFORSTK definition in the preprocessor symbols

 -10-

158

 Ratfor (1) 21-Dec-81 Ratfor (1)

 file.
 * getdef is confused
 There were horrendous problems when attempting to access
 the definition table
 o illegal break
 Break did not occur inside a valid "while", "for", or
 "repeat" loop
 o illegal case or default
 A "case" or "default" statement was detected which was not
 in the scope of a "switch" statement.
 o illegal case syntax
 The case label was not of the correct form. It may
 consist of comma-separated constants or ranges of
 constants.
 o illegal else
 Else clause probably did not follow an "if" clause
 * Illegal enddef encountered
 An "enddef" directive was encountered while conditional
 preprocessing was inactive.
 o illegal next
 "Next" did not occur inside a valid "for", "while", or
 "repeat" loop
 o illegal range in case label
 A case label specifying a range of values (of the form
 m-n) was detected in which m > n.
 o illegal right brace
 A right brace was found without a matching left brace
 o in entdef: no room for new definition
 There is insufficient memory for macro definitions, etc.
 Increase the MEMSIZE definition in the preprocessor.
 o includes nested too deeply
 There is a limit to the level of nesting of included
 files. It is dependent upon the maximum number of opened
 files allowed at a time, and is set by the NFILES
 definition in the preprocessor symbols file.
 o invalid case label
 The upper limit of a case label specifying a range was
 non-numeric.
 * invalid conditional token
 The token given as the argument to an "ifdef" or
 "ifnotdef" directive was not alpha-numeric.
 o invalid for clause
 The "for" clause did not contain a valid init, condition,
 and/or increment section
 o invalid string size
 The string format ’string name(size) "..."’ was used, but
 the size was given improperly.
 * missing ‘(’ in conditional
 The first non-blank token following an "ifdef" or
 "ifnotdef" directive was NOT a left parenthesis.

 -11-

159

 Ratfor (1) 21-Dec-81 Ratfor (1)

 * missing ‘)’ in conditional
 An "ifdef" of "ifnotdef" directive was not properly
 terminated with a right parenthesis.
 * missing ‘)’ in define
 A define(...) was not properly terminated with a right
 parenthesis.
 * missing ‘(’ in undefine
 The first non-blank token following an "undefine" was NOT
 a left parenthesis.
 * missing ‘)’ in undefine
 An "undefine" directive was not properly terminated with a
 right parenthesis.
 o missing apostrophe in character literal
 An apostrophe-delimited string NOT of the form ’c’ or ’@c’
 was encountered.
 * missing colon in case or default label
 The list of case labels, or the default label were not
 followed by a colon.
 * missing comma in define
 Definitions of the form ’define(name,defn)’ must include
 the comma as a separator.
 o missing function name
 There was an error in declaring a function
 o missing left brace in switch statement
 The left brace indicating the start of the block of case
 labels for the "switch" statement was not encountered.
 o missing left paren
 A parenthesis was expected, probably in an "if" statement,
 but not found
 o missing literal quote
 The terminating "%)" to a literally quoted string was not
 found.
 o missing parenthesis in condition
 A right parenthesis was expected, probably in an "if"
 statement, but not found
 o missing quote
 A quoted string was not terminated by a quote
 o missing right paren
 A right parenthesis was expected in a Fortran (as opposed
 to Ratfor) statement but not found
 o missing string token
 No array name was given when declaring a string variable
 * multiple defaults in switch statement
 More than one "default" statements were detected in the
 scope of a single "switch" statement.
 o No room for generated variable name
 The table space used for generated long variable names has
 been exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.

 -12-

160

 Ratfor (1) 21-Dec-81 Ratfor (1)

 o No room for linkage external name
 The table space used for generated external names has been
 exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.
 * non-alphanumeric name
 Definitions may contain only alphanumeric characters and
 underscores.
 * stack overflow in parser
 Statements were nested at too deep a level. The stack
 depth is set by the MAXSTACK definition in the
 preprocessor symbols file.
 * switch table overflow
 More case labels were specified than the internal storage
 can handle. The size of the internal storage is
 determined by the value of MAXSWITCH defined in the
 preprocessor symbols file.
 o token too long
 A token (word) in the source code was too long to fit into
 one of Ratfor’s internal arrays. The maximum size is set
 by the MAXTOK definition in the preprocessor symbols
 file.
 * too many characters pushed back
 The source code has illegally specified a Ratfor command,
 or has used a Ratfor keyword in an illegal manner, and the
 parser has attempted but failed to make sense out of it.
 The size of the push-back buffer is set by BUFSIZE in the
 preprocessor symbols file.
 o unbalanced parentheses
 Unbalanced parentheses detected in a Fortran (as opposed
 to Ratfor) statement
 o unexpected EOF
 An end-of-file was reached before all braces had been
 accounted for. This is usually caused by unmatched braces
 somewhere deep in the source code.
 o warning: possible label conflict
 This message is printed when the user has labeled a
 statement with a label in the 23000-23999 range. Ratfor
 statements are assigned in this range and a user-defined
 one may conflict with a Ratfor-generated one.
 * "file": cannot open
 Ratfor could not open an input file specified by the user
 on the command line.

 AUTHORS
 Original by B. Kernighan and P. J. Plauger, with rewrites and
 enhancements by David Hanson and friends (U. of Arizona), Joe
 Sventek and Debbie Scherrer (Lawrence Berkeley Laboratory), and
 Allen Akin (Georgia Institute of Technology).

 -13-

161

 Ratfor (1) 21-Dec-81 Ratfor (1)

 BUGS/DEFICIENCIES
 Missing parentheses or braces may cause erratic behavior.
 Eventually Ratfor should be taught to terminate
 parenthesis/brace checking at the end of each subroutine.

 Although one bug was fixed which caused line numbers in error
 messages to be incorrect, they still aren’t quite right.
 (newlines in macro text are difficult to handle properly). Use
 them only as a general area in which to look for errors.

 Extraneous ’continue’ statements are generated within Fortran
 ’do’ statements. The ’next’ statement does not work properly
 when used within Fortran ’do’ statements.

 There is no way to explicitly cause a statement to begin in
 column 6 (i.e. a Fortran continued statement), although
 implicit continuation is performed.

 Ratfor is very slow, principally in the lexical analysis,
 character input, and macro processing routines (in that
 order). Attempts to speed it up should concentrate on the
 routines ’gtok’, ’ngetch’, and ’deftok’. An even better
 approach would be to re-work the lexical analyzer and parser
 completely.

 -14-

162

 Ratfor (1) 21-Dec-81 Ratfor (1)

 NAME
 Ratfor - RatFor preprocessor

 SYNOPSIS
 ratp1 [-n] [file] ... | ratp2 >outfile

 ratfor [-n] [file] ... >outfile

 rat77 [-n] [file] ... >outfile

 DESCRIPTION
 Ratfor translates the ratfor programs in the named files into
 Fortran. If no input files are given, or the filename ’-’
 appears, the standard input will be read.

 Unless the ’-n’ flag has been specified, a file containing
 general purpose software tools definitions (e.g. EOF, EOS,
 etc.) will be automatically opened and processed before any of
 the files specified are read.

 Syntax:

 Ratfor has the following syntax:
 prog: stmt
 prog stmt
 stmt: if (expr) stmt
 if (expr) stmt else stmt
 while (expr) stmt
 repeat stmt
 repeat stmt until (expr)
 for (init clause; test expr; incr clause) stmt
 do expr stmt
 do n expr stmt
 break
 break n
 next
 next n
 return (expr)
 switch (expr) {
 case expr: stmt
 ...
 default: stmt
 }
 digits stmt
 { prog } or [prog]
 other
 other: anything unrecognizable (i.e. fortran)
 clause: other
 clause, other

 -1-

163

 Ratfor (1) 21-Dec-81 Ratfor (1)

 where ’stmt’ is any Fortran or Ratfor statement. A statement
 is terminated by an end-of-line or a semicolon.

 Character Translation:

 The following character translations are performed:
 < .lt.
 <= .le.
 == .eq.
 != .ne. ^= .ne. ˜= .ne.
 >= .ge.
 > .gt.
 | .or.
 & .and.
 ! .not. ^ .not. ˜ .not.

 Included files:

 The statement

 include file or
 include "file"

 will insert the contents of the specified file into the ratfor
 input in place of the ’include’ statement. Quotes must
 surround the file name if it contains characters other than
 alphanumerics or underscores.

 Macro Definitions:

 The statement

 define(name,replacement text)

 defines ’name’ as a macro which will be replaced with the
 indicated text when encountered in the source files. Any
 occurrences of the strings ’$n’ in the replacement text, where
 1 <= n <= 9, will be replaced with the nth argument when the
 macro is actually invoked. For example:

 define(bump, $1 = $1 + 1)

 will cause the source line

 bump(i)

 to be expanded into

 -2-

164

 Ratfor (1) 21-Dec-81 Ratfor (1)

 i = i + 1

 The names of macros may contain letters, digits and underline
 characters, but must start with a letter. Upper case is not
 equivalent to lower case in macro names.

 The replacement text is copied directly into the lookup table
 with no intepretation of the arguments, which differs from the
 procedure used in the macro utility. This "deferred
 evaluation" has the effect of eliminating the need for
 bracketing strings to get them through the macro processor
 unchanged. A side effect of the deferred evaluation is that
 defined names cannot be forced through the processor - i.e. the
 string "define" will never be output from the preprocessor.
 The inequivalence of upper and lower case in macro names may be
 used in this case to force the name of a user defined macro
 onto the output - i.e. if the user has defined a macro named
 mymac, the replacement text may contain the string MYMAC, which
 is not defined, and will pass through the processor.

 (For compatibility, an "mdefine" macro call has been included
 which interprets definitions before stacking them, as does the
 macro tool. When using this version, use "$(" and "$)" to
 indicate deferred evaluation, rather than the "[" and "]" used
 by the macro tool.)

 In addition to define, several other built-in macros are
 provided:

 arith(x,op,y) performs the "integer" arithmetic specified by
 op (+,-,*,/,**) on the two numeric operands
 and returns the result as its replacement.
 incr(x) converts the string x to a number, adds one to
 it, and returns the value as its replacement
 (as a character string).
 ifelse(a,b,c,d) compares a and b as character strings; if they
 are the same, c is pushed back onto the input,
 else d is pushed back.
 substr(s,m,n) produces the substring of s which starts at
 position m (with origin one), of length n. If
 n is omitted or too big, the rest of the
 string is used, while if m is out of range the
 result is a null string.
 lentok(str) pushes the length of the argument (# of
 characters) onto the input as a character
 string.
 undefine(sym) removes the definition for the symbol ‘sym’,
 if it is defined.

 -3-

165

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Note: the statement

 define name text

 may also be used, but will not always perform correctly for
 macros with parameters or multi-line replacement text. The
 functional form is preferred.

 Conditional Preprocessing:

 The statements

 ifdef(macro) ifnotdef(macro)
 . .
 . .
 . .
 elsedef elsedef
 . .
 . .
 . .
 enddef enddef

 conditionalize the preprocessing upon whether the macro has
 been previously defined or not. The ‘elsedef’ portions of the
 conditionals may be omitted, if desired. The conditional
 bodies may be nested, up to 10 levels deep.

 String Declarations:

 The statements

 string name "character string" or
 string name(size) "character string"

 declare ’name’ to be a character array long enough to
 accomodate the ascii codes for the given character string, one
 per array element. The array is then filled by data
 statements. The last word of ’name’ is initialized to the
 symbolic parameter EOS, and indicates the end of a string. EOS
 must be defined either in the standard definitions file or by
 the user. If a size is given, name is declared to be a
 character array of ’size’ elements. The normal escape
 sequences are supported in strings; in addition, to embed a
 quote (") in the string, one must type @".

 -4-

166

 Ratfor (1) 21-Dec-81 Ratfor (1)

 String Literals:

 The processing of in-line quoted strings ("..." appearing
 outside of the scope of a ‘string’ declaration) is dependent
 upon which version of the processor you are using:

 ratfor "str" is converted to 3Hstr. This action is identical
 to previous versions of the pre-processor.

 ratp1 "str" is converted to an appropriate declaration for a
 ‘character’ array, and the appropriate data statements
 are output. The variable name will be of the form
 STNNNZ, where NNN is replaced by a rotating sequence
 number. The array will be declared long enough to place
 the value of EOS in the last element, just as for the
 ‘string’ declaration. Since these declarations are
 output immediately, the resulting FORTRAN code must be
 run through the program ‘ratp2’, which will reorder the
 code to be ANSI-66 compliant.

 rat77 "str" is converted to the FORTRAN-77 constant ’str’. It
 is expected that this version of the preprocessor will
 NOT automatically load the standard symbols file, thus
 permitting the use of ‘rat77’ to preprocess F77 code.

 Regardless of the version used, string literals can be
 continued across line boundaries by ending the line to be
 continued with an underline. The underline is not included as
 part of the literal. Leading blanks and tabs on the next line
 are ignored. If a quote (") is to be embedded in the string,
 it must be escaped, as in

 "a quote (@") in a string"

 In addition, the normal escape sequences are supported in the
 ‘ratp1’ version.

 Character Literals:

 Character constants of the form ’c’ are converted to the
 decimal integer representation of that character in the ASCII
 character set. For example:

 call putc(’!’)

 would become

 -5-

167

 Ratfor (1) 21-Dec-81 Ratfor (1)

 call putc(33)

 The normal escape characters are supported as character
 constants. For example

 ’@n’

 is a NEWLINE (10).

 Note that this capability pre-empts the use of apostrophes for
 delimiting string literals. Attempts to pre-process programs
 utilitizing apostrophes for string literals will generate
 syntax errors of the form:

 missing apostrophe in character literal

 An utility ‘ratfix’ is available for quickly correcting such
 code.

 Integer Constants:

 Integer constants in bases other than decimal may be specified
 as n%dddd... where ’n’ is a decimal number indicating the base
 and ’dddd...’ are digits in that base. For bases > 10, letters
 are used for digits above 9. Examples include: 8%77 (=63),
 16%2ff (=767), 2%0010011 (=19). The number is converted to the
 equivalent decimal value using multiplication; this may cause
 sign problems if the number has too many digits.

 Lines and Continuation:

 Input is free-format; that is, statements may appear anywhere
 on a line, and the end of the line is generally considered the
 end of the statement. However, lines ending in special
 characters such as comma, +, -, and * are assumed to be
 continued on the next line. An exception to this rule is
 within a condition; the line is assumed to be continued if the
 condition does not fit on one line. Explicit continuation is
 indicated by ending a line with an underline character (_).
 The underline character is not copied to the output file.

 Comments:

 Comments are preceded by ’#’ signs and may appear anywhere in
 the code.

 -6-

168

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Literal (unprocessed) Lines:

 Lines can be passed through ratfor without being processed by
 putting a percent "%" as the first character on the line. The
 percent will be removed and the line shifted one position to
 the left, but otherwise will be output without change. Macro
 invocations, long names, etc., appearing in the line will not
 be processed.

 Literal (unprocessed) Character Sequences:

 Sequences of characters can be passed through the processor,
 thus avoiding processing, by surrounding then with the tokens
 %(...%). The surrounding %[()] tokens will be removed and the
 character sequence will be output without change. Macro
 invocations, long names, etc. appearing in the character
 sequence will NOT be processed.

 Long Variable Name Processing:

 An optional capability available in the pre-processor, which
 may be enabled by your local tools support individual, is the
 capability of converting long variable names (those consisting
 of more than 6 alpha-numerics, embedded underscores, or both)
 to 6 character ANSI-66 compliant variable names. If this
 option is available, and has been used in a pre-processing run,
 a sequence of FORTRAN comment statements are output at the end
 of the generated FORTRAN code, with the mapping of long names
 to generated names.

 It should be noted that this mapping is not deterministic
 across separate compilations; as such, if ‘get_next_input’ is
 compiled and placed in a library, source invocations of
 ‘get_next_input’ would not map into the identical 6-character
 name. To permit users to preload the long name table with the
 names of external routines, the ‘linkage’ statement may be
 used:

 linkage long_name external_name

 The pair of names is entered into the table of known long
 variable names, preventing any generated names for local long
 variables from colliding with the external name. The
 programmer must provide accurate information via this statement
 to permit access to routines with "long variable names" across
 compilations.

 If long variable name processing has not been enabled for your

 -7-

169

 Ratfor (1) 21-Dec-81 Ratfor (1)

 site, linkage is synonymous with define.

 NOTE: since long variable name processing is optional, its use
 will generate code that is inherently non-portable to sites not
 desiring this capability. Users wishing to write portable code
 should avoid long variable names.

 CHANGES
 This ratfor preprocessor differs from the original (as released
 by Kernighan and Plauger) in the following ways:

 The code has been rewritten and reorganized.

 Hash tables have been added for increased efficiency in
 searching for macro definitions and Ratfor keywords.

 The ’string’ declaration has been included.

 The define processor has been augmented to support macros with
 arguments.

 Conditional preprocessing upon the definition (or lack therof)
 of a symbol has been included.

 Many extraneous gotos have been avoided.

 Blanks have been included in the output for increased
 readability.

 Multi-level ’break’ and ’next’ statements have been included.

 The Fortran ’DO’ is allowed, as well as the ratfor one.

 The capability of specifying integer constants in bases other
 than decimal has been added.

 Underscores have been allowed in names.

 The ’define’ syntax has been expanded to include the form:
 define name value

 The ’return(value)’ feature has been added.

 Quoted file names following ’include’ statements have been
 added to allow for special characters in file names.

 A method for allowing lines to pass through un-processed has

 -8-

170

 Ratfor (1) 21-Dec-81 Ratfor (1)

 been added.

 The ’switch’ control statement has been included.

 Continuation lines have been implemented.

 Brackets have been allowed to replace braces (but NOT ’$(’ and
 ’$)’)

 Character constants are now supported.

 Groups of FORTRAN statements are permitted in the init and
 re-init clauses of the for statement.

 A method for allowing character sequences to pass through
 un-processed has been added.

 An ‘undefine’ command has been added to permit removal of
 symbol definitions.

 Three types of literal character string processing are now
 possible. The default action permanently eliminates the usage
 of Hollerith constants in portable tools.

 Long variable names processing can now be enabled as a
 site-dependent option.

 FILES
 A generalized definition file (e.g. ’ratdef’) is automatically
 opened and read.

 SEE ALSO
 Kernighan and Plauger’s "Software Tools"
 Kernighan’s "RATFOR - A Preprocessor for a Rational Fortran"
 The Unix command rc in the Unix Manual
 The tools ’incl’ and ’macro’

 DIAGNOSTICS
 (The errors marked with asterisk ’*’ are fatal; all others are
 simply warning messages.)

 * arg stack overflow
 The argument stack for the macro processor has been
 exceeded. The size of the stack is determined by the
 symbol ARGSIZE in the source definitions file.
 o arith error
 An error occurred while evaluating the built-in macro,
 ‘arith’.
 * buffer overflow

 -9-

171

 Ratfor (1) 21-Dec-81 Ratfor (1)

 One of the preprocessor’s internal buffers overflowed,
 possibly, but not necessarily, because the string buffers
 were exceeded. The definition SBUFSIZE in the
 preprocessor symbols file determines the size of the
 string buffers.
 * call stack overflow
 The call stack (used to store call frames) in the macro
 processor has been exceeded. The definition CALLSIZE in
 the source definition file determines the size of this
 stack.
 * cannot make identifier unique
 All attempts to generate an unique short variable name for
 the long variable name being processed failed. This
 message will only be seen if the long variable name
 processing has been enabled.
 o cannot open standard definitions file
 The special file containing general purpose ratfor
 definitions could not be opened, possibly because it did
 not exist or the user did not have access to the directory
 on which it resides.
 o can’t open include
 File to be included could not be located, the user did not
 have privilege to access it, or the file could not be
 opened due to some problem in the local primitives.
 o conditional processing still active at EOF
 A sufficient number of "enddef" directives have not been
 encountered before detecting EOF on the input file.
 * Conditionals nested too deeply
 The stack for nested conditionals has overflowed. The
 size of the stack is specified by the value of
 COND_STACK_DEPTH defined in the preprocessor symbols
 file.
 * definition too long
 The number of characters in the name to be defined
 exceeded Ratfor’s internal array size. The size is
 defined by the MAXTOK definition in the preprocessor
 symbols file.
 o duplicate case label
 Two case labels with identical values were detected.
 * EOF in string
 The macro processor detected an EOF in the current input
 file while evaluating a macro.
 * evaluation stack overflow
 The evaluation stack for the macro processor has been
 exceeded. This stack’s size is determined by the symbol
 EVALSIZE in the source definition file.
 * for clause too long
 The internal buffer used to hold the clauses for the ’for’
 statement was exceeded. Size of this buffer is determined
 by the MAXFORSTK definition in the preprocessor symbols

 -10-

172

 Ratfor (1) 21-Dec-81 Ratfor (1)

 file.
 * getdef is confused
 There were horrendous problems when attempting to access
 the definition table
 o illegal break
 Break did not occur inside a valid "while", "for", or
 "repeat" loop
 o illegal case or default
 A "case" or "default" statement was detected which was not
 in the scope of a "switch" statement.
 o illegal case syntax
 The case label was not of the correct form. It may
 consist of comma-separated constants or ranges of
 constants.
 o illegal else
 Else clause probably did not follow an "if" clause
 * Illegal enddef encountered
 An "enddef" directive was encountered while conditional
 preprocessing was inactive.
 o illegal next
 "Next" did not occur inside a valid "for", "while", or
 "repeat" loop
 o illegal range in case label
 A case label specifying a range of values (of the form
 m-n) was detected in which m > n.
 o illegal right brace
 A right brace was found without a matching left brace
 o in entdef: no room for new definition
 There is insufficient memory for macro definitions, etc.
 Increase the MEMSIZE definition in the preprocessor.
 o includes nested too deeply
 There is a limit to the level of nesting of included
 files. It is dependent upon the maximum number of opened
 files allowed at a time, and is set by the NFILES
 definition in the preprocessor symbols file.
 o invalid case label
 The upper limit of a case label specifying a range was
 non-numeric.
 * invalid conditional token
 The token given as the argument to an "ifdef" or
 "ifnotdef" directive was not alpha-numeric.
 o invalid for clause
 The "for" clause did not contain a valid init, condition,
 and/or increment section
 o invalid string size
 The string format ’string name(size) "..."’ was used, but
 the size was given improperly.
 * missing ‘(’ in conditional
 The first non-blank token following an "ifdef" or
 "ifnotdef" directive was NOT a left parenthesis.

 -11-

173

 Ratfor (1) 21-Dec-81 Ratfor (1)

 * missing ‘)’ in conditional
 An "ifdef" of "ifnotdef" directive was not properly
 terminated with a right parenthesis.
 * missing ‘)’ in define
 A define(...) was not properly terminated with a right
 parenthesis.
 * missing ‘(’ in undefine
 The first non-blank token following an "undefine" was NOT
 a left parenthesis.
 * missing ‘)’ in undefine
 An "undefine" directive was not properly terminated with a
 right parenthesis.
 o missing apostrophe in character literal
 An apostrophe-delimited string NOT of the form ’c’ or ’@c’
 was encountered.
 * missing colon in case or default label
 The list of case labels, or the default label were not
 followed by a colon.
 * missing comma in define
 Definitions of the form ’define(name,defn)’ must include
 the comma as a separator.
 o missing function name
 There was an error in declaring a function
 o missing left brace in switch statement
 The left brace indicating the start of the block of case
 labels for the "switch" statement was not encountered.
 o missing left paren
 A parenthesis was expected, probably in an "if" statement,
 but not found
 o missing literal quote
 The terminating "%)" to a literally quoted string was not
 found.
 o missing parenthesis in condition
 A right parenthesis was expected, probably in an "if"
 statement, but not found
 o missing quote
 A quoted string was not terminated by a quote
 o missing right paren
 A right parenthesis was expected in a Fortran (as opposed
 to Ratfor) statement but not found
 o missing string token
 No array name was given when declaring a string variable
 * multiple defaults in switch statement
 More than one "default" statements were detected in the
 scope of a single "switch" statement.
 o No room for generated variable name
 The table space used for generated long variable names has
 been exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.

 -12-

174

 Ratfor (1) 21-Dec-81 Ratfor (1)

 o No room for linkage external name
 The table space used for generated external names has been
 exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.
 * non-alphanumeric name
 Definitions may contain only alphanumeric characters and
 underscores.
 * stack overflow in parser
 Statements were nested at too deep a level. The stack
 depth is set by the MAXSTACK definition in the
 preprocessor symbols file.
 * switch table overflow
 More case labels were specified than the internal storage
 can handle. The size of the internal storage is
 determined by the value of MAXSWITCH defined in the
 preprocessor symbols file.
 o token too long
 A token (word) in the source code was too long to fit into
 one of Ratfor’s internal arrays. The maximum size is set
 by the MAXTOK definition in the preprocessor symbols
 file.
 * too many characters pushed back
 The source code has illegally specified a Ratfor command,
 or has used a Ratfor keyword in an illegal manner, and the
 parser has attempted but failed to make sense out of it.
 The size of the push-back buffer is set by BUFSIZE in the
 preprocessor symbols file.
 o unbalanced parentheses
 Unbalanced parentheses detected in a Fortran (as opposed
 to Ratfor) statement
 o unexpected EOF
 An end-of-file was reached before all braces had been
 accounted for. This is usually caused by unmatched braces
 somewhere deep in the source code.
 o warning: possible label conflict
 This message is printed when the user has labeled a
 statement with a label in the 23000-23999 range. Ratfor
 statements are assigned in this range and a user-defined
 one may conflict with a Ratfor-generated one.
 * "file": cannot open
 Ratfor could not open an input file specified by the user
 on the command line.

 AUTHORS
 Original by B. Kernighan and P. J. Plauger, with rewrites and
 enhancements by David Hanson and friends (U. of Arizona), Joe
 Sventek and Debbie Scherrer (Lawrence Berkeley Laboratory), and
 Allen Akin (Georgia Institute of Technology).

 -13-

175

 Ratfor (1) 21-Dec-81 Ratfor (1)

 BUGS/DEFICIENCIES
 Missing parentheses or braces may cause erratic behavior.
 Eventually Ratfor should be taught to terminate
 parenthesis/brace checking at the end of each subroutine.

 Although one bug was fixed which caused line numbers in error
 messages to be incorrect, they still aren’t quite right.
 (newlines in macro text are difficult to handle properly). Use
 them only as a general area in which to look for errors.

 Extraneous ’continue’ statements are generated within Fortran
 ’do’ statements. The ’next’ statement does not work properly
 when used within Fortran ’do’ statements.

 There is no way to explicitly cause a statement to begin in
 column 6 (i.e. a Fortran continued statement), although
 implicit continuation is performed.

 Ratfor is very slow, principally in the lexical analysis,
 character input, and macro processing routines (in that
 order). Attempts to speed it up should concentrate on the
 routines ’gtok’, ’ngetch’, and ’deftok’. An even better
 approach would be to re-work the lexical analyzer and parser
 completely.

 -14-

176

 Ratfor (1) 21-Dec-81 Ratfor (1)

 NAME
 Ratfor - RatFor preprocessor

 SYNOPSIS
 ratp1 [-n] [file] ... | ratp2 >outfile

 ratfor [-n] [file] ... >outfile

 rat77 [-n] [file] ... >outfile

 DESCRIPTION
 Ratfor translates the ratfor programs in the named files into
 Fortran. If no input files are given, or the filename ’-’
 appears, the standard input will be read.

 Unless the ’-n’ flag has been specified, a file containing
 general purpose software tools definitions (e.g. EOF, EOS,
 etc.) will be automatically opened and processed before any of
 the files specified are read.

 Syntax:

 Ratfor has the following syntax:
 prog: stmt
 prog stmt
 stmt: if (expr) stmt
 if (expr) stmt else stmt
 while (expr) stmt
 repeat stmt
 repeat stmt until (expr)
 for (init clause; test expr; incr clause) stmt
 do expr stmt
 do n expr stmt
 break
 break n
 next
 next n
 return (expr)
 switch (expr) {
 case expr: stmt
 ...
 default: stmt
 }
 digits stmt
 { prog } or [prog]
 other
 other: anything unrecognizable (i.e. fortran)
 clause: other
 clause, other

 -1-

177

 Ratfor (1) 21-Dec-81 Ratfor (1)

 where ’stmt’ is any Fortran or Ratfor statement. A statement
 is terminated by an end-of-line or a semicolon.

 Character Translation:

 The following character translations are performed:
 < .lt.
 <= .le.
 == .eq.
 != .ne. ^= .ne. ˜= .ne.
 >= .ge.
 > .gt.
 | .or.
 & .and.
 ! .not. ^ .not. ˜ .not.

 Included files:

 The statement

 include file or
 include "file"

 will insert the contents of the specified file into the ratfor
 input in place of the ’include’ statement. Quotes must
 surround the file name if it contains characters other than
 alphanumerics or underscores.

 Macro Definitions:

 The statement

 define(name,replacement text)

 defines ’name’ as a macro which will be replaced with the
 indicated text when encountered in the source files. Any
 occurrences of the strings ’$n’ in the replacement text, where
 1 <= n <= 9, will be replaced with the nth argument when the
 macro is actually invoked. For example:

 define(bump, $1 = $1 + 1)

 will cause the source line

 bump(i)

 to be expanded into

 -2-

178

 Ratfor (1) 21-Dec-81 Ratfor (1)

 i = i + 1

 The names of macros may contain letters, digits and underline
 characters, but must start with a letter. Upper case is not
 equivalent to lower case in macro names.

 The replacement text is copied directly into the lookup table
 with no intepretation of the arguments, which differs from the
 procedure used in the macro utility. This "deferred
 evaluation" has the effect of eliminating the need for
 bracketing strings to get them through the macro processor
 unchanged. A side effect of the deferred evaluation is that
 defined names cannot be forced through the processor - i.e. the
 string "define" will never be output from the preprocessor.
 The inequivalence of upper and lower case in macro names may be
 used in this case to force the name of a user defined macro
 onto the output - i.e. if the user has defined a macro named
 mymac, the replacement text may contain the string MYMAC, which
 is not defined, and will pass through the processor.

 (For compatibility, an "mdefine" macro call has been included
 which interprets definitions before stacking them, as does the
 macro tool. When using this version, use "$(" and "$)" to
 indicate deferred evaluation, rather than the "[" and "]" used
 by the macro tool.)

 In addition to define, several other built-in macros are
 provided:

 arith(x,op,y) performs the "integer" arithmetic specified by
 op (+,-,*,/,**) on the two numeric operands
 and returns the result as its replacement.
 incr(x) converts the string x to a number, adds one to
 it, and returns the value as its replacement
 (as a character string).
 ifelse(a,b,c,d) compares a and b as character strings; if they
 are the same, c is pushed back onto the input,
 else d is pushed back.
 substr(s,m,n) produces the substring of s which starts at
 position m (with origin one), of length n. If
 n is omitted or too big, the rest of the
 string is used, while if m is out of range the
 result is a null string.
 lentok(str) pushes the length of the argument (# of
 characters) onto the input as a character
 string.
 undefine(sym) removes the definition for the symbol ‘sym’,
 if it is defined.

 -3-

179

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Note: the statement

 define name text

 may also be used, but will not always perform correctly for
 macros with parameters or multi-line replacement text. The
 functional form is preferred.

 Conditional Preprocessing:

 The statements

 ifdef(macro) ifnotdef(macro)
 . .
 . .
 . .
 elsedef elsedef
 . .
 . .
 . .
 enddef enddef

 conditionalize the preprocessing upon whether the macro has
 been previously defined or not. The ‘elsedef’ portions of the
 conditionals may be omitted, if desired. The conditional
 bodies may be nested, up to 10 levels deep.

 String Declarations:

 The statements

 string name "character string" or
 string name(size) "character string"

 declare ’name’ to be a character array long enough to
 accomodate the ascii codes for the given character string, one
 per array element. The array is then filled by data
 statements. The last word of ’name’ is initialized to the
 symbolic parameter EOS, and indicates the end of a string. EOS
 must be defined either in the standard definitions file or by
 the user. If a size is given, name is declared to be a
 character array of ’size’ elements. The normal escape
 sequences are supported in strings; in addition, to embed a
 quote (") in the string, one must type @".

 -4-

180

 Ratfor (1) 21-Dec-81 Ratfor (1)

 String Literals:

 The processing of in-line quoted strings ("..." appearing
 outside of the scope of a ‘string’ declaration) is dependent
 upon which version of the processor you are using:

 ratfor "str" is converted to 3Hstr. This action is identical
 to previous versions of the pre-processor.

 ratp1 "str" is converted to an appropriate declaration for a
 ‘character’ array, and the appropriate data statements
 are output. The variable name will be of the form
 STNNNZ, where NNN is replaced by a rotating sequence
 number. The array will be declared long enough to place
 the value of EOS in the last element, just as for the
 ‘string’ declaration. Since these declarations are
 output immediately, the resulting FORTRAN code must be
 run through the program ‘ratp2’, which will reorder the
 code to be ANSI-66 compliant.

 rat77 "str" is converted to the FORTRAN-77 constant ’str’. It
 is expected that this version of the preprocessor will
 NOT automatically load the standard symbols file, thus
 permitting the use of ‘rat77’ to preprocess F77 code.

 Regardless of the version used, string literals can be
 continued across line boundaries by ending the line to be
 continued with an underline. The underline is not included as
 part of the literal. Leading blanks and tabs on the next line
 are ignored. If a quote (") is to be embedded in the string,
 it must be escaped, as in

 "a quote (@") in a string"

 In addition, the normal escape sequences are supported in the
 ‘ratp1’ version.

 Character Literals:

 Character constants of the form ’c’ are converted to the
 decimal integer representation of that character in the ASCII
 character set. For example:

 call putc(’!’)

 would become

 -5-

181

 Ratfor (1) 21-Dec-81 Ratfor (1)

 call putc(33)

 The normal escape characters are supported as character
 constants. For example

 ’@n’

 is a NEWLINE (10).

 Note that this capability pre-empts the use of apostrophes for
 delimiting string literals. Attempts to pre-process programs
 utilitizing apostrophes for string literals will generate
 syntax errors of the form:

 missing apostrophe in character literal

 An utility ‘ratfix’ is available for quickly correcting such
 code.

 Integer Constants:

 Integer constants in bases other than decimal may be specified
 as n%dddd... where ’n’ is a decimal number indicating the base
 and ’dddd...’ are digits in that base. For bases > 10, letters
 are used for digits above 9. Examples include: 8%77 (=63),
 16%2ff (=767), 2%0010011 (=19). The number is converted to the
 equivalent decimal value using multiplication; this may cause
 sign problems if the number has too many digits.

 Lines and Continuation:

 Input is free-format; that is, statements may appear anywhere
 on a line, and the end of the line is generally considered the
 end of the statement. However, lines ending in special
 characters such as comma, +, -, and * are assumed to be
 continued on the next line. An exception to this rule is
 within a condition; the line is assumed to be continued if the
 condition does not fit on one line. Explicit continuation is
 indicated by ending a line with an underline character (_).
 The underline character is not copied to the output file.

 Comments:

 Comments are preceded by ’#’ signs and may appear anywhere in
 the code.

 -6-

182

 Ratfor (1) 21-Dec-81 Ratfor (1)

 Literal (unprocessed) Lines:

 Lines can be passed through ratfor without being processed by
 putting a percent "%" as the first character on the line. The
 percent will be removed and the line shifted one position to
 the left, but otherwise will be output without change. Macro
 invocations, long names, etc., appearing in the line will not
 be processed.

 Literal (unprocessed) Character Sequences:

 Sequences of characters can be passed through the processor,
 thus avoiding processing, by surrounding then with the tokens
 %(...%). The surrounding %[()] tokens will be removed and the
 character sequence will be output without change. Macro
 invocations, long names, etc. appearing in the character
 sequence will NOT be processed.

 Long Variable Name Processing:

 An optional capability available in the pre-processor, which
 may be enabled by your local tools support individual, is the
 capability of converting long variable names (those consisting
 of more than 6 alpha-numerics, embedded underscores, or both)
 to 6 character ANSI-66 compliant variable names. If this
 option is available, and has been used in a pre-processing run,
 a sequence of FORTRAN comment statements are output at the end
 of the generated FORTRAN code, with the mapping of long names
 to generated names.

 It should be noted that this mapping is not deterministic
 across separate compilations; as such, if ‘get_next_input’ is
 compiled and placed in a library, source invocations of
 ‘get_next_input’ would not map into the identical 6-character
 name. To permit users to preload the long name table with the
 names of external routines, the ‘linkage’ statement may be
 used:

 linkage long_name external_name

 The pair of names is entered into the table of known long
 variable names, preventing any generated names for local long
 variables from colliding with the external name. The
 programmer must provide accurate information via this statement
 to permit access to routines with "long variable names" across
 compilations.

 If long variable name processing has not been enabled for your

 -7-

183

 Ratfor (1) 21-Dec-81 Ratfor (1)

 site, linkage is synonymous with define.

 NOTE: since long variable name processing is optional, its use
 will generate code that is inherently non-portable to sites not
 desiring this capability. Users wishing to write portable code
 should avoid long variable names.

 CHANGES
 This ratfor preprocessor differs from the original (as released
 by Kernighan and Plauger) in the following ways:

 The code has been rewritten and reorganized.

 Hash tables have been added for increased efficiency in
 searching for macro definitions and Ratfor keywords.

 The ’string’ declaration has been included.

 The define processor has been augmented to support macros with
 arguments.

 Conditional preprocessing upon the definition (or lack therof)
 of a symbol has been included.

 Many extraneous gotos have been avoided.

 Blanks have been included in the output for increased
 readability.

 Multi-level ’break’ and ’next’ statements have been included.

 The Fortran ’DO’ is allowed, as well as the ratfor one.

 The capability of specifying integer constants in bases other
 than decimal has been added.

 Underscores have been allowed in names.

 The ’define’ syntax has been expanded to include the form:
 define name value

 The ’return(value)’ feature has been added.

 Quoted file names following ’include’ statements have been
 added to allow for special characters in file names.

 A method for allowing lines to pass through un-processed has

 -8-

184

 Ratfor (1) 21-Dec-81 Ratfor (1)

 been added.

 The ’switch’ control statement has been included.

 Continuation lines have been implemented.

 Brackets have been allowed to replace braces (but NOT ’$(’ and
 ’$)’)

 Character constants are now supported.

 Groups of FORTRAN statements are permitted in the init and
 re-init clauses of the for statement.

 A method for allowing character sequences to pass through
 un-processed has been added.

 An ‘undefine’ command has been added to permit removal of
 symbol definitions.

 Three types of literal character string processing are now
 possible. The default action permanently eliminates the usage
 of Hollerith constants in portable tools.

 Long variable names processing can now be enabled as a
 site-dependent option.

 FILES
 A generalized definition file (e.g. ’ratdef’) is automatically
 opened and read.

 SEE ALSO
 Kernighan and Plauger’s "Software Tools"
 Kernighan’s "RATFOR - A Preprocessor for a Rational Fortran"
 The Unix command rc in the Unix Manual
 The tools ’incl’ and ’macro’

 DIAGNOSTICS
 (The errors marked with asterisk ’*’ are fatal; all others are
 simply warning messages.)

 * arg stack overflow
 The argument stack for the macro processor has been
 exceeded. The size of the stack is determined by the
 symbol ARGSIZE in the source definitions file.
 o arith error
 An error occurred while evaluating the built-in macro,
 ‘arith’.
 * buffer overflow

 -9-

185

 Ratfor (1) 21-Dec-81 Ratfor (1)

 One of the preprocessor’s internal buffers overflowed,
 possibly, but not necessarily, because the string buffers
 were exceeded. The definition SBUFSIZE in the
 preprocessor symbols file determines the size of the
 string buffers.
 * call stack overflow
 The call stack (used to store call frames) in the macro
 processor has been exceeded. The definition CALLSIZE in
 the source definition file determines the size of this
 stack.
 * cannot make identifier unique
 All attempts to generate an unique short variable name for
 the long variable name being processed failed. This
 message will only be seen if the long variable name
 processing has been enabled.
 o cannot open standard definitions file
 The special file containing general purpose ratfor
 definitions could not be opened, possibly because it did
 not exist or the user did not have access to the directory
 on which it resides.
 o can’t open include
 File to be included could not be located, the user did not
 have privilege to access it, or the file could not be
 opened due to some problem in the local primitives.
 o conditional processing still active at EOF
 A sufficient number of "enddef" directives have not been
 encountered before detecting EOF on the input file.
 * Conditionals nested too deeply
 The stack for nested conditionals has overflowed. The
 size of the stack is specified by the value of
 COND_STACK_DEPTH defined in the preprocessor symbols
 file.
 * definition too long
 The number of characters in the name to be defined
 exceeded Ratfor’s internal array size. The size is
 defined by the MAXTOK definition in the preprocessor
 symbols file.
 o duplicate case label
 Two case labels with identical values were detected.
 * EOF in string
 The macro processor detected an EOF in the current input
 file while evaluating a macro.
 * evaluation stack overflow
 The evaluation stack for the macro processor has been
 exceeded. This stack’s size is determined by the symbol
 EVALSIZE in the source definition file.
 * for clause too long
 The internal buffer used to hold the clauses for the ’for’
 statement was exceeded. Size of this buffer is determined
 by the MAXFORSTK definition in the preprocessor symbols

 -10-

186

 Ratfor (1) 21-Dec-81 Ratfor (1)

 file.
 * getdef is confused
 There were horrendous problems when attempting to access
 the definition table
 o illegal break
 Break did not occur inside a valid "while", "for", or
 "repeat" loop
 o illegal case or default
 A "case" or "default" statement was detected which was not
 in the scope of a "switch" statement.
 o illegal case syntax
 The case label was not of the correct form. It may
 consist of comma-separated constants or ranges of
 constants.
 o illegal else
 Else clause probably did not follow an "if" clause
 * Illegal enddef encountered
 An "enddef" directive was encountered while conditional
 preprocessing was inactive.
 o illegal next
 "Next" did not occur inside a valid "for", "while", or
 "repeat" loop
 o illegal range in case label
 A case label specifying a range of values (of the form
 m-n) was detected in which m > n.
 o illegal right brace
 A right brace was found without a matching left brace
 o in entdef: no room for new definition
 There is insufficient memory for macro definitions, etc.
 Increase the MEMSIZE definition in the preprocessor.
 o includes nested too deeply
 There is a limit to the level of nesting of included
 files. It is dependent upon the maximum number of opened
 files allowed at a time, and is set by the NFILES
 definition in the preprocessor symbols file.
 o invalid case label
 The upper limit of a case label specifying a range was
 non-numeric.
 * invalid conditional token
 The token given as the argument to an "ifdef" or
 "ifnotdef" directive was not alpha-numeric.
 o invalid for clause
 The "for" clause did not contain a valid init, condition,
 and/or increment section
 o invalid string size
 The string format ’string name(size) "..."’ was used, but
 the size was given improperly.
 * missing ‘(’ in conditional
 The first non-blank token following an "ifdef" or
 "ifnotdef" directive was NOT a left parenthesis.

 -11-

187

 Ratfor (1) 21-Dec-81 Ratfor (1)

 * missing ‘)’ in conditional
 An "ifdef" of "ifnotdef" directive was not properly
 terminated with a right parenthesis.
 * missing ‘)’ in define
 A define(...) was not properly terminated with a right
 parenthesis.
 * missing ‘(’ in undefine
 The first non-blank token following an "undefine" was NOT
 a left parenthesis.
 * missing ‘)’ in undefine
 An "undefine" directive was not properly terminated with a
 right parenthesis.
 o missing apostrophe in character literal
 An apostrophe-delimited string NOT of the form ’c’ or ’@c’
 was encountered.
 * missing colon in case or default label
 The list of case labels, or the default label were not
 followed by a colon.
 * missing comma in define
 Definitions of the form ’define(name,defn)’ must include
 the comma as a separator.
 o missing function name
 There was an error in declaring a function
 o missing left brace in switch statement
 The left brace indicating the start of the block of case
 labels for the "switch" statement was not encountered.
 o missing left paren
 A parenthesis was expected, probably in an "if" statement,
 but not found
 o missing literal quote
 The terminating "%)" to a literally quoted string was not
 found.
 o missing parenthesis in condition
 A right parenthesis was expected, probably in an "if"
 statement, but not found
 o missing quote
 A quoted string was not terminated by a quote
 o missing right paren
 A right parenthesis was expected in a Fortran (as opposed
 to Ratfor) statement but not found
 o missing string token
 No array name was given when declaring a string variable
 * multiple defaults in switch statement
 More than one "default" statements were detected in the
 scope of a single "switch" statement.
 o No room for generated variable name
 The table space used for generated long variable names has
 been exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.

 -12-

188

 Ratfor (1) 21-Dec-81 Ratfor (1)

 o No room for linkage external name
 The table space used for generated external names has been
 exhausted. Increase the MEMSIZE definition in the
 preprocessor. This message cannot appear unless the long
 variable name processing has been enabled.
 * non-alphanumeric name
 Definitions may contain only alphanumeric characters and
 underscores.
 * stack overflow in parser
 Statements were nested at too deep a level. The stack
 depth is set by the MAXSTACK definition in the
 preprocessor symbols file.
 * switch table overflow
 More case labels were specified than the internal storage
 can handle. The size of the internal storage is
 determined by the value of MAXSWITCH defined in the
 preprocessor symbols file.
 o token too long
 A token (word) in the source code was too long to fit into
 one of Ratfor’s internal arrays. The maximum size is set
 by the MAXTOK definition in the preprocessor symbols
 file.
 * too many characters pushed back
 The source code has illegally specified a Ratfor command,
 or has used a Ratfor keyword in an illegal manner, and the
 parser has attempted but failed to make sense out of it.
 The size of the push-back buffer is set by BUFSIZE in the
 preprocessor symbols file.
 o unbalanced parentheses
 Unbalanced parentheses detected in a Fortran (as opposed
 to Ratfor) statement
 o unexpected EOF
 An end-of-file was reached before all braces had been
 accounted for. This is usually caused by unmatched braces
 somewhere deep in the source code.
 o warning: possible label conflict
 This message is printed when the user has labeled a
 statement with a label in the 23000-23999 range. Ratfor
 statements are assigned in this range and a user-defined
 one may conflict with a Ratfor-generated one.
 * "file": cannot open
 Ratfor could not open an input file specified by the user
 on the command line.

 AUTHORS
 Original by B. Kernighan and P. J. Plauger, with rewrites and
 enhancements by David Hanson and friends (U. of Arizona), Joe
 Sventek and Debbie Scherrer (Lawrence Berkeley Laboratory), and
 Allen Akin (Georgia Institute of Technology).

 -13-

189

 Ratfor (1) 21-Dec-81 Ratfor (1)

 BUGS/DEFICIENCIES
 Missing parentheses or braces may cause erratic behavior.
 Eventually Ratfor should be taught to terminate
 parenthesis/brace checking at the end of each subroutine.

 Although one bug was fixed which caused line numbers in error
 messages to be incorrect, they still aren’t quite right.
 (newlines in macro text are difficult to handle properly). Use
 them only as a general area in which to look for errors.

 Extraneous ’continue’ statements are generated within Fortran
 ’do’ statements. The ’next’ statement does not work properly
 when used within Fortran ’do’ statements.

 There is no way to explicitly cause a statement to begin in
 column 6 (i.e. a Fortran continued statement), although
 implicit continuation is performed.

 Ratfor is very slow, principally in the lexical analysis,
 character input, and macro processing routines (in that
 order). Attempts to speed it up should concentrate on the
 routines ’gtok’, ’ngetch’, and ’deftok’. An even better
 approach would be to re-work the lexical analyzer and parser
 completely.

 -14-

190

 Ratp2 (1) 10-May-83 Ratp2 (1)

 NAME
 Ratp2 - Ratfor second pass processor

 SYNOPSIS
 ratp2 [file] ... >outfile

 DESCRIPTION
 ‘ratp2’ is the second pass of the new pre-processor. It’s
 function is to re-order the output of the first pass to be
 ANSI-66 compliant. It’s input is simply FORTRAN code, and all
 statements between successive END statements are re-ordered.
 If filename arguments are not provided, it reads from standard
 input.

 SEE ALSO
 ratfor, the ratfor preprocessor, for descriptions of the
 language.

 AUTHORS
 Phil Scherrer wrote ratp2.

 BUGS/DEFICIENCIES

 -1-

191

 Rc (1) 13-Dec-82 Rc (1)

 NAME
 Rc - RatFor compiler

 SYNOPSIS
 rc [-cdfmorv] file ...

 DESCRIPTION
 rc is the ratfor compiler. It accepts the following types of
 arguments:

 1. Files whose names end in ’.r’ are assumed to be ratfor
 source programs; they are preprocessed into fortran and
 compiled. The preprocessed file for name.r is placed on
 name.f and the compiled object code appears on name.obj.
 The name.f file is removed unless -f is specified (see
 below).

 2. The flags which affect the actions of the compiler are:

 -c suppress the loading phase, as does any preprocessing or
 compilation error

 -d do whatever is necessary to prepare the fortran files for
 the system debugger. In addition, pass the -d on to fc.
 The -d implies -f also.

 -f save fortran intermediate files; usually for debugging
 purposes

 -m passed on to fc and ld. Produce a load map of some
 sort.

 -o generates fortran listing for name.f on name.l

 -r ratfor only; don’t compile fortran; implies -f and -c

 -v verbose option; prints additional information about the
 compilation process

 3. Files whose names end in ’.f’ are assumed to be fortran
 source programs, and are compiled. Other arguments are
 assumed to be loader flags, or object files, typically
 created by an earlier rc or fc run. These files, together
 with the results of any compilations, are loaded to produce
 an executable process.

 SEE ALSO
 ratfor, the ratfor preprocessor, for descriptions of the
 language and for a more general way of performing the

 -1-

192

 Rc (1) 13-Dec-82 Rc (1)

 preprocessing.
 fc, the fortran compiler
 ld, the loader, for loader flags and process naming conventions

 AUTHORS
 Joe Sventek wrote the interface of rc to ratfor, fc, and ld.

 BUGS/DEFICIENCIES

 -2-

193

 Resume (1) 8-Jun-79 Resume (1)

 NAME
 Resume - resume a suspended process

 SYNOPSIS
 resume processid [processid ...]

 DESCRIPTION
 resume resumes a suspended process which has been suspended by
 the utility suspnd. The processid’s are returned by the shell
 when a background process is spawned.

 FILES
 none

 SEE ALSO
 suspnd - suspend a running process
 sh - shell (command line interpreter)

 DIAGNOSTICS
 If the process cannot be resumed, an error message will be
 displayed on the error output.

 AUTHORS
 Joe Sventek (VAX)

 BUGS/DEFICIENCIES

 -1-

194

 Rev (1) 11-Jul-79 Rev (1)

 NAME
 Rev - reverse lines

 SYNOPSIS
 rev [file] ...

 DESCRIPTION
 Rev copies the named files to the standard output, reversing
 the order of the characters in every line.

 If no files are given, or the filename ’-’ is specified, rev
 reads from the standard input.

 AUTHORS
 David Hanson and friends (U. of Arizona)

 DIAGNOSTICS

 BUGS/DEFICIENCIES

 -1-

195

 Rm (1) 29-Oct-81 Rm (1)

 NAME
 Rm - remove files

 SYNOPSIS
 rm [-fiv] [file] ...

 DESCRIPTION
 rm removes the files specified. If none are specified and
 standard input is not a terminal, ‘rm’ reads the names of the
 files to delete from the standard input. The options are:

 -v (verbose) display each file’s name as it is deleted

 -f (force) attempt deletion regardless of protection

 -i (interactive) prompt for confirmation before deleting
 unless the "-f" option is in effect.

 If a file is protected from delete access, you are asked if you
 want to try anyway. If you respond with a "y", rm will try to
 unprotect the file and then delete it.

 FILES

 SEE ALSO
 The Unix command ’rm’

 DIAGNOSTICS
 A message is printed if the file could not be removed.

 AUTHORS
 Joe Sventek (DEC machines); Debbie Scherrer (CDC machines) The
 "-f" and "-i" options were added by Dave Martin.

 BUGS/DEFICIENCIES

 -1-

196

 Ruler (1) 29-Oct-80 Ruler (1)

 NAME
 Ruler - display ruler on terminal screen

 SYNOPSIS
 ruler [n]

 DESCRIPTION
 ruler displays a ruler on the terminal. This is especially
 useful when using field or other utilities which require
 knowledge of the column positions of portions of the screen.
 The optional numeric argument indicates how many columns to
 format in the ruler.

 FILES

 SEE ALSO
 field - utility for field manipulation
 sort - file sorter

 DIAGNOSTICS

 AUTHORS
 Dave Martin

 BUGS/DEFICIENCIES

 -1-

197

 Sched (1) 29-Oct-80 Sched (1)

 NAME
 Sched - a way to repetitively invoke a command

 SYNOPSIS
 sched [-r<repetitions>] [-t<seconds>] "shell command"

 DESCRIPTION
 sched causes the command typed in quotes to be repetitively
 invoked. The defaults are to invoke the command once, and to
 wait 1 second before each invocation. This utility is quite
 nice for statistics gathering, since sched may be run in the
 background, with the diagnostic output being appended to some
 log file. For example:

 % sched -r144 -t600 "who | lcnt >>usrcnt"

 would generate a log of the number of users on the system for
 one day, running at 10-minute intervals. The resulting list of
 numbers could then be fed to a suitable analysis or plotting
 program.

 FILES

 SEE ALSO

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

198

 Sedit (1) 26-Jul-83 Sedit (1)

 NAME
 Sedit - stream editor

 SYNOPSIS
 sedit [-n] [[-e] command] ... [-f commandfile] ... [file] ...

 DESCRIPTION
 sedit copies the input files (default is standard input) to the
 standard output, performing one or more editing commands (see
 ’ed’) on each line.

 The -n flag indicates that only lines that are explicitly
 printed by ’p’ commands are to be copied to the standard
 output. Double copies of some lines will be output if the ’p’
 command is used without specifying the -n flag.

 The -e flag indicates that the next argument is a sedit
 command.

 The -f flag indicates that the next argument is the name of a
 file in which sedit commands appear one per line.

 The -e and -f arguments may be intermixed in any order. The
 order of command execution is the order in which commands are
 read.

 If no -e or -f flags are given, the first argument is used as
 an sedit command. When the first argument not in the scope of
 a flag is encountered, it and all succeeding arguments are
 taken as input files. If no files are given, or if the name
 "-" is specified, the standard input is read.

 Sedit commands have the general form

 line1 [, line2] [!] command arguments

 A line number (line1 or line2) is either a decimal number that
 refers to a specific input line (input lines are counted
 cumulatively across files), a "$" that refers to the last line
 of input, or a /pattern/ where pattern is a regular expression
 (as in ’ed’). Line number 0 may be used to specify commands
 that should be executed before any input is read.

 A command with no line numbers is applied to every line of
 input. A command with one line number is applied to every line
 of input that matches the line number. A command with two line
 numbers is applied to every line of input beginning with the
 first line that matches line1 through the next line that
 matches line2. Thereafter, the process is repeated, looking
 again for a line that matches line1.

 -1-

199

 Sedit (1) 26-Jul-83 Sedit (1)

 A command is negated by placing the ’!’ character after the
 line numbers and before the command character. This has the
 effect of executing the command on all of the lines except the
 ones specified.

 There is no notion of ’.’ and no relative addressing. No
 expressions in addresses are allowed. There are no backward
 pattern searches with ’\’. A ’p’ at the end of a command only
 works with the ’s’ command.

 If an ’a’, ’i’, ’c’, or ’r’ command is successfully executed,
 the text is inserted into the standard output whether or not
 the line on which the match was made is later deleted or not.
 Text inserted in the output stream by these commands is not
 scanned for any pattern matches, nor are any sedit commands
 applied to it, nor will it effect the input line numbering.

 Sedit accepts the following commands. Each command may be used
 with 0, 1, or 2 line numbers. Any of the commands may appear
 on the ’sedit’ command line except the a, c, and i commands.
 They can only be used in command files.

 a
 <text>
 .
 Append. The <text> is placed on the output after each
 selected line.

 c
 <text>
 .
 Change. The selected lines are deleted and <text> is placed
 on the output in their place.

 d
 Delete. The selected lines are deleted.

 i
 <text>
 .
 Insert. The <text> is placed on the output before each
 selected line.

 p
 Print. The selected lines are printed on the standard
 output.

 q
 Quit. The current line is output (unless the -n option is
 specified) and no further processing is done.

 -2-

200

 Sedit (1) 26-Jul-83 Sedit (1)

 r file
 Read file. The contents of "file" are placed on the output
 after each selected line exactly as if the contents were
 given as <text> in an a command.

 s/pat/new/gp
 Substitute. The leftmost occurrences of pat in the selected
 lines are changed to new. If g is specified, all
 occurrences are changed. If p is specified, the resulting
 line is printed. The search string ’pat’ is a regular
 expression as defined for ’ed’. The replacement string
 ’new’ also uses the same conventions as ’ed’ for search
 string replacement (&, and $1...$9). Subsequent sedit
 commands will only match the resulting lines.

 w file
 Write file. The selected lines are appended to "file".
 Files mentioned in w commands are created before processing
 begins. The limit on the number of w commands depends on
 the number of files that can be opened at the same time.

 =
 Print line number. The current line number is printed on
 the output as a line.

 Sedit can accomodate commands (including <text> arguments),
 totaling approximately 5000 characters (20,000 if
 LARGE_ADDRESS_SPACE is defined).

 SEE ALSO
 ed, change, tr

 DIAGNOSTICS
 In addition to the usual error messages resulting from file
 access failure, sedit issues the following messages preceded by
 the offending command line.

 bad line numbers
 indicates that the line number expressions are invalid.

 invalid command
 indicates that the command preceeding the message is
 illegal. This message is issued for a, i, or c commands if
 they appear in command string scripts.

 too many commands
 indicates exhaustion of space to hold commands. The size of
 the command buffer is determined by the MAXBUF definition in
 the source code.

 -3-

201

 Sedit (1) 26-Jul-83 Sedit (1)

 AUTHORS
 Layne Cannon (Battelle Northwest Labs)
 Chris Fraser (U. of Arizona)

 BUGS/DEFICIENCIES

 -4-

202

 Send (1) 10-Nov-81 Send (1)

 NAME
 Send - send a message to another user’s terminal

 SYNOPSIS
 send {user | -user | term}

 DESCRIPTION
 Send copies lines from your terminal to that of another user.
 When first called, it sends the message

 [message from <your_name> on <your_terminal> hh:mm:ss]

 All lines you type will then be transmitted to the other user’s
 terminal until you enter a ^Z. The message

 [end of message from <your_name> hh:mm:ss]

 is then sent.

 You may specify either a username or a particular terminal
 (i.e. tta0) to receive the message. If you specify a username
 and that user is logged in on more than one terminal, you are
 asked to pick one of the terminals to receive the message. If
 -username is specified then all of the terminals that the user
 is logged in on will receive the message.

 FILES
 A scratch file generated with seed ‘‘who’’.

 IMPLEMENTATION
 Send spawns ‘‘who’’ to map users to their terminals, and then
 calls the VMS SYS$BRDCST system service to send the messages.

 SEE ALSO
 The UNIX command "write"

 DIAGNOSTICS
 ? Can’t write to ‘‘username’’.

 ? Can’t spawn ‘‘who’’.

 ? Can’t read scratch file.

 AUTHORS
 Dave Martin (Hughes Aircraft) with modifications by Mike
 Kimura.

 BUGS/DEFICIENCIES

 -1-

203

 Sepfor (1) 22-Dec-81 Sepfor (1)

 NAME
 Sepfor - Split FORTRAN programs into multiple files

 SYNOPSIS
 sepfor [-v] file ...

 DESCRIPTION
 Sepfor is useful for cracking large FORTRAN programs into
 separate files. Each subroutine or function is placed in a
 file of the same name. Names are stripped of any ‘‘$’’ and
 ‘‘_’’ characters they may contain. The main program (which is
 assumed to precede the subroutines in the source file) is named
 ‘‘main<n>’’ where <n> is the number of the file argument. In
 most cases there is only one file specified and the main
 program is thus named ‘‘main1’’.

 If the ‘‘-v’’ (verbose) option is specifed, Sepfor echoes the
 name of each routine on STDOUT as it is processed.

 EXAMPLES
 sepfor -v spice.for

 FILES
 none

 IMPLEMENTATION
 Sepfor decides it has found a subroutine when it finds the
 keyword ‘‘subroutine’’ as the first word on a line. It decides
 it has found a function when it finds the keyword ‘‘function’’
 as the the second OR third word on a line. The name is taken
 to be the first word following the keyword. Sepfor decides it
 has found the end of a module when it discovers the keyword
 ‘‘end’’ at the beginning of a line and it does NOT find the
 keyword ‘‘do’’ or ‘‘if’’ immediately thereafter.

 AUTHORS
 Dave Martin (Hughes Aircraft)

 BUGS/DEFICIENCIES
 Sepfor does not recognize ENDDO or ENDIF; you must separate the
 keywords with a blank.

 -1-

204

 Sh (1) 27-Jul-81 Sh (1)

 NAME
 Sh - shell (command line interpreter)

 SYNOPSIS
 sh [-cdnvx] [name [arguments]].

 DESCRIPTION
 Sh is a command line interpreter: it reads lines typed by you
 and interprets them as requests to execute other programs.

 o COMMANDS

 In simplest form, a command line consists of the command name
 followed by arguments to the command, all separated by spaces:

 command arg1 arg2 ... argn

 The shell splits up the command name and the arguments into
 separate strings. Then a file with name ‘command’ is sought;
 ‘command’ may be a path name to specify any file in the
 system. If ‘command’ is found, it is brought into memory and
 executed. The arguments collected by the shell are accessible
 to the command. When the command is finished, the shell
 resumes its own execution and indicates its readiness to accept
 another command by typing a prompt character.

 If file ‘command’ can’t be found in the current directory or
 through its pathname, the shell searches your ‘home/tools’
 directory, the site-specific tools directory, and finally the
 general tools directory. If the file still has not been found,
 and the ‘-d’ switch has not been specified, the shell passes
 the entire command line to the local operating system’s command
 line interpreter (DCL for VMS). An example of a simple command
 is:

 sort list

 which would sort the contents of file ‘list’, printing the
 output at your terminal.

 Some characters on the command line have special meanings to
 the shell (these are discussed below). The character ‘@’ may
 be included anywhere in the command line to cause the following
 character to lose any special meaning it may have to the shell
 (to be ‘escaped’). Sequences of characters enclosed in double
 (") or single (’) quotes are also taken literally.

 o STANDARD I/O

 -1-

205

 Sh (1) 27-Jul-81 Sh (1)

 Shell programs in general have three standard files open :
 ‘input’, ‘output’, and ‘error output’. All three are assigned
 to your terminal unless redirected by the special arguments
 ‘<’, ‘>’, ‘?’, ‘>>’, ‘??’, (and sometimes ‘-’).

 An argument of the form ‘<name’ causes the file ‘name’ to be
 used as the standard input file of the associated command.

 An argument of the form ‘>name’ causes file ‘name’ to be used
 as the standard output.

 An argument of the form ‘?name’ causes the file ‘name’ to be
 used as the standard error output.

 Arguments of the form ‘>>name’ or ‘??name’ cause program output
 to be appended to ‘name’ for standard output or error output
 respectively. If ‘name’ does not exist, it will be created.

 Most tools have the capability to read their input from a
 series of files. In this case, the list of files overrides
 reading from standard input. However, many of the tools allow
 you to read from both a list of files and from input by
 specifying the filename ‘-’ for standard input. For example:

 format file1 - file2

 would read its input from ‘file1’, then from the standard
 input, then from ‘file2’.

 o FILTERS AND PIPES

 The output from one command may be directed to the input of
 another. A sequence of commands separated by vertical bars
 (‘|’) or carets (‘^’) causes the shell to arrange that the
 standard output of each command be delivered to the standard
 input of the next command in sequence. Thus in the command
 line:
 sort list | uniq | crt

 ‘Sort’ sorts the contents of file ‘list’; its output is passed
 to ‘uniq’, which strips out duplicate lines. The output from
 ‘uniq’ is then input to ‘crt’, which prepares the lines for
 viewing on your crt terminal.

 The vertical bar is called a ‘pipe’. Programs such as ‘sort’,
 ‘uniq’, and ‘crt’, which copy standard input to standard output
 (making some changes along the way) are called ‘filters’.

 -2-

206

 Sh (1) 27-Jul-81 Sh (1)

 o COMMAND SEPARATORS

 Commands need not be on different lines; instead they may be
 separated by semicolons:
 ar t file; ed

 The above command will first list the contents of the archived
 file ‘file’, then enter the editor.

 The shell also allows commands to be grouped together with
 parentheses, where the group can then be used as a filter. For
 example:

 (date; cat chocolate) | comm vanilla

 writes first the date and then the file ‘chocolate’ to standard
 output, which is then read as input by ‘comm’. This tool
 compares the results with existing file ‘vanilla’ to see which
 lines the two files have in common.

 o MULTITASKING

 On many systems the shell also allows processes to be executed
 in the background. If a command is followed by ‘&’, the shell
 will not wait for the command to finish before prompting again;
 instead, it is ready immediately to accept a new command. For
 instance:

 ratfor ambrose >george &

 preprocesses the file ‘ambrose’, putting the output on
 ‘george’. No matter how long the compilation takes, the shell
 returns immediately. The identification number of the process
 running that command is printed. This identification may be
 used to wait for the completion of the command or to terminate
 it.

 The ‘&’ may be used several times in a line. Parentheses and
 pipes are also allowed (within the same background process).

 o SCRIPT FILES

 The shell itself is a command, and may be called recursively,
 either implicitly or explicitly. This is primarily useful for
 executing files containing lines of shell commands. For
 instance, suppose you had a file named ‘nbrcount.sh’ which
 looked like this:

 -3-

207

 Sh (1) 27-Jul-81 Sh (1)

 echo "Counting strings of digits"
 tr <program 0-9 9 | tr !9 | ccnt

 These commands count all the digit strings in ‘program’. You
 could have the shell execute the commands by typing:

 sh nbrcount.sh

 The shell will also execute script files implicitly. For
 example, giving the command:

 nbrcount

 would cause the shell to notice that the file ‘nbrcount.sh’
 contained text rather than executable code. The shell would
 then execute itself again, using ‘nbrcount.sh’ as its input.

 Arguments may also be passed to script files. In script files,
 character sequences of the form ‘$n’, where n is a digit
 between 1 and 9, are replaced by the nth argument to the
 invocation of the shell. For instance, suppose the file
 ‘private.sh’ contained the following commands:

 cat $1 $2 $3 | crypt key >$4
 ar u loveletters $4

 Then, executing the command:

 private Dan John Harold fair

 would merge the files ‘Dan’, ‘John’, and ‘Harold’, encrypt
 them, and store them away in an archive under the name ‘fair’.

 Script files may be used as filters in pipelines just like
 regular commands.

 Script files sometimes require in-line data to be available to
 them. A special input redirection notation ‘<<’ is used to
 achieve this effect. For example, the editor normally takes
 its commands from the standard input. However, within a shell
 procedure commands could be embedded this way:

 ed file <<!
 { editing requests }
 !

 The lines between ‘<<!’ and ‘!’ are called a ‘here’ document;
 they are read by the shell and made available as the standard
 input. The character ‘!’ is arbitrary, the document being

 -4-

208

 Sh (1) 27-Jul-81 Sh (1)

 terminated by a line that consists of whatever character
 followed the ‘<<’.

 You may establish scripts for the shell to execute when you
 ‘login’ to a shell by creating a script file named ‘login.sh’
 in your home/tools directory.

 o SEARCH PATH

 When the shell receives a command to execute, such as

 % tool

 it looks for ‘tool’ in the following places, in the following
 order:

 1) ‘tool.sh’ in the current working directory
 2) ‘tool.xxx’ in the current working directory, where ‘xxx’ is
 to be replaced by the appropriate extension for an image
 file on your system.
 3) ˜/tool.sh or ˜/tools/tool.sh
 4) ˜/tool.xxx or ˜/tools/tool.xxx
 5) ˜usr/tool.sh
 6) ˜usr/tool.xxx
 7) ˜bin/tool.sh
 8) ˜bin/tool.xxx

 The search stops whenever one of these files is found; the type
 of the file (ASCII | BINARY) is then determined. If the type
 is BINARY, then a sub-process running that image file is
 spawned; otherwise, a sub-process running the shell is spawned,
 with that shell reading the located file as its input
 commands. If the entire search path is exhausted without
 success, the command is handed to the native command
 interpreter for execution, unless the ‘-d’ option has been
 selected.

 o SHELL FLAGS

 The shell accepts several special arguments when it is
 invoked. The argument ‘-v’ asks the shell to print each line
 of a script file as it is read as input. For instance,

 sh -v private Jasmine Irma Jennifer twostars

 would print each line of the script file ‘private’ as soon as
 it is read by the shell.

 -5-

209

 Sh (1) 27-Jul-81 Sh (1)

 The argument ‘-x’ is similar to the -v above except that
 commands are printed right before they are executed. These
 commands will be printed in the actual format the system
 expects when attempting to execute the program.

 The argument ‘-n’ suppresses execution of the command
 entirely.

 The argument ‘-c’ causes the remaining arguments to be executed
 as a shell command.

 The argument ‘-d’ inhibits the shell from ‘dropping through’ to
 the native command line interpreter when a command can’t be
 found.

 o INTERNAL COMMANDS

 Several commands are actually executed by the shell itself. As
 such, they cannot have the standard I/O units redirected. The
 syntax and semantics of these commands are:

 * von

 Enables the -v flag above.

 * voff

 Disables the -v flag.

 * xon

 Enables the -x flag above.

 * xoff

 Disables the -x flag.

 * cd [directory]

 Changes the current working directory (CWD) to the specified
 directory. If the single argument is omitted, the CWD is
 changed to the last directory visited in this way. If the
 change of the CWD fails, an error message is displayed and
 the CWD is left unchanged.

 * ho[me]

 Change the current working directory to the user’s home
 directory. The same result can be achieved via ‘cd ˜/’.

 -6-

210

 Sh (1) 27-Jul-81 Sh (1)

 * logout

 Causes the shell to stop reading the current input file.
 This is equivalent to an EndofFile on the current input
 file.

 * # [args]

 This command is a comment. This permits script files to be
 commented for future enlightenment. A blank character MUST
 separate the ‘#’ from the comment strings.

 * path

 Display the search path in current use.

 * alias
 alias name
 alias name value

 The first form lists the values of all known aliases. The
 second form lists the value of the alias ‘name’. The third
 form creates an alias ‘name’ having ‘value’. ‘value’ is
 simply taken to be the remainder of the command, with
 parameter substitution being performed on the words. See the
 section below on aliases and parameters for more
 information.

 * unalias name

 Destroy the alias ‘name’. See the section below on aliases
 and parameters for more information.

 * param
 param name
 param name value

 The first form lists the values of all known parameters. The
 second form lists the value of the parameter ‘name’. The
 third form creates a parameter ‘name’ having ‘value’.
 ‘value’ is simply taken to be the remainder of the command,
 with parameter substitution being performed on the words.
 See the section below on aliases and parameters for more
 information.

 * unparam name

 Destroys the parameter ‘name’. See the section below on
 aliases and parameters for more information.

 -7-

211

 Sh (1) 27-Jul-81 Sh (1)

 * ask name[prompt[default-value]]

 Prompts the user on the Standard Input unit for the value of
 the parameter ‘name’. If the prompt string is not specified,
 or is null (""), the string "name? " will be used. If the
 user responds with a bare carriage-return, the parameter will
 assume the default value, if specified, or will not be
 defined.

 * source file

 The current input unit is stacked, and the shell input is
 taken from ‘file’. ‘source’ commands nest to a maximum depth
 of 2. Upon detection of an EndofFile on ‘file’, input is
 resumed from the previous input file.
 ***** NOTE: source commands must appear alone on a line, or
 dire consequences will result! *****

 o ALIASES AND PARAMETERS

 Often it is convenient to store frequently used strings in
 variables for recall with a small number of keystrokes.
 Aliases and parameters exist to provide such a facility,
 differing only in the way that they are used.

 When the shell has finished parsing your command is and in the
 process of preparing to execute it, the first token in the
 command line (the verb) is looked up in the table of aliases.
 If it is found, then the verb is replaced by the value of the
 alias; independent of the replacement of the verb, the command
 line is then executed. For instance, if you with to invoke the
 editor with a personalized prompt, the following alias

 alias e ed "-pWas gibt? "

 causes the following transformation to take place

 e file ====> ed "-pWas gibt? " file

 The user must explicitly ask for a parameter to be expanded.
 We have already seen examples of the use of parameters, when
 referencing the positional arguments to scripts as $1, $2, ...,
 $9. For example, suppose that a particular directory on
 another machine has a set of files with cooking recipes. A
 parameter can be used to permit easy reference to the directory

 param cook /0de/db0/frenchchf

 Then commands of the form

 -8-

212

 Sh (1) 27-Jul-81 Sh (1)

 ls $cook; cat $cook/quiche.man

 will permit you to list the contents of the directory and
 display one of the recipes.

 Parameters are expanded inside of quoted strings when they are
 delimited by a quote character ("), but are not expanded when
 delimited by an apostrophe (’). In addition to the positional
 parameters $1, $2, ..., $9, two shorthand parameters are
 available for causing all positional parameters to be
 displayed:

 $@ results in "$1" "$2" ...
 $* results in "$1 $2 ..."

 o INTERRUPTS

 There are often occasions when you may wish to interrupt the
 execution of a process initiated by the shell. This may be
 achieved by typing the interrupt character at the terminal.
 Typing the interrupt character will cause the process to be
 terminated, and the shell will prompt you for your next
 command. A complete list of system-specific special terminal
 characters may be had by typing the command ‘tty’ to the
 shell. ‘Tty’ is a system-dependent tool which displays on
 standard output all of the special terminal characters
 interpreted by the local system. For example, the interrupt
 character for the VAX is ^C (control C). If the following two
 commands are typed to the shell:

 sort mybigfile
 ^C

 then the sorter would be aborted.

 o TERMINATION

 The shell may be terminated by typing an EndOfFile (‘^Z’) as a
 command.

 FILES

 SEE ALSO
 The Unix command sh.
 The Bell system Technical Journal, vol. 57, no. 6, part 2,
 July-Aug 1978.

 -9-

213

 Sh (1) 27-Jul-81 Sh (1)

 DIAGNOSTICS
 The error message ‘syntax error’ appears whenever a command
 line cannot be understood.

 AUTHORS
 Dennis Hall, Joe Sventek, Debbie Scherrer, Dave Martin.

 BUGS/DEFICIENCIES
 If you want to escape a shell special character that appears as
 the first character of an argument, you must escape it with
 quotes rather than an ‘@’ sign.

 -10-

214

 Sleep (1) 29-Oct-80 Sleep (1)

 NAME
 Sleep - cause process to suspend itself for a period of time

 SYNOPSIS
 sleep seconds

 DESCRIPTION
 sleep causes the process to suspend itself for the indicated
 number of seconds. This facility is generally useful when
 sending formatted output to a high-quality terminal, and you
 need time to change the paper from the time you invoke the
 command until it starts printing on the good paper.

 FILES

 SEE ALSO
 sched - a way to repetitively invoke a command

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

215

 Sort (1) 14-Apr-78 Sort (1)

 NAME
 Sort - sort and/or merge text files

 SYNOPSIS
 sort [-bdfimr] [+ofile] [+sn] [file] ...

 DESCRIPTION
 Sort sorts lines of all the named files together and writes the
 result on the standard output. The name ’-’ means the
 standard input. The standard input is also used if no input
 file names are given. Thus sort may be used as a filter.

 The sort key is an entire line. Default ordering is alphabetic
 by characters as they are represented in ASCII format. The
 ordering is affected by the following flags, one or more of
 which may appear.

 -b Leading blanks are not included in keys.

 -d ’Dictionary’ order: only letters, digits and blanks are
 significant in comparisons.

 -f Fold all letters to a single case.

 -i Ignore all nonprinting nonblank characters.

 -m Merge only, the input files are already sorted.

 -r Reverse the sense of the sort

 +o Cause final output to be placed on ‘file’. This permits
 one of the input files to be the output file. This switch
 is necessary since using the redirection ‘>file’ will cause
 ‘file’ to be unreadable when ‘sort’ is generating the
 initial runs.

 +sn Sort according to the subfield starting on column n

 FILES
 A series of scratch files are generated and subsequently
 deleted. Presently the files are named "STn" where "n" is a
 sequence number.

 SEE ALSO
 The Unix command "sort" in the Unix User’s Manual.

 DIAGNOSTICS
 A message is printed if a file cannot be located.

 -1-

216

 Sort (1) 14-Apr-78 Sort (1)

 AUTHORS
 Original design from Kernighan and Plauger’s "Software
 Tools", with modifications by Debbie Scherrer. The external
 merge phase of sort was completely rewritten by Joe Sventek.

 BUGS/DEFICIENCIES
 The merge phase is performed with a polyphase merge/sort
 algorithm, which requires an end-of-run delimiter on the
 scratch files. The one chosen is a bare ^D(ASCII code 4) on a
 line. If this is in conflict with your data files, the symbol
 CTRLD in sortsym should be redefined and sort built again.

 Eventually all the Unix "sort" flags should be implemented.
 These include:
 sort [-mubdfinrtx] [+pos] [-pos] [-o file] [file] ...

 The additional flags are:

 n An initial numeric string, consisting of optional minus
 sign, digits and optionally included decimal point, is sorted
 by arithmetic value.

 tx Tab character between fields is x.

 +pos -pos Selected parts of the line, specified by +pos
 and -pos, may be used as sort keys. Pos has the form m.n
 optionally followed by one or more of the flags bdfinr, where
 m specifies a number of fields to skip, n a number of
 characters to skip further into the next field, and the flags
 specify a special ordering rule for the key. A missing .n is
 taken to be 0. +pos denotes the beginning of the key; -pos
 denotes the first position after the key (end of line by
 default). Later keys are compared only when all earlier keys
 compare equal. Note: The first field of a line is numbered
 zero.

 When no tab character has been specified, a field consists of
 nonblanks and any preceding blanks. Under the -b flag,
 leading blanks are excluded from a field. When a tab
 character has been specified, fields are strings separated by
 tab characters.

 Lines that otherwise compare equal are ordered with all bytes
 significant.

 -o The next argument is the name of an output file to use
 instead of the standard output. This file may be the same as
 one of the inputs, except under the merge flag -m. {Note--it
 is not clear why this flag is needed.]

 -2-

217

 Sort (1) 14-Apr-78 Sort (1)

 -u Suppress all but one in each set of contiguous equal
 lines. Ignored bytes and bytes outside keys do not
 participate in this comparison.

 -3-

218

 Spell (1) 11-Jan-79 Spell (1)

 NAME
 Spell - find spelling errors

 SYNOPSIS
 spell [-ddictname] [file] ...

 DESCRIPTION
 Spell copies the named files (or standard input if none are
 specified) to standard output while looking up each word in a
 dictionary. If any spelling errors are found in a particular
 line, an additional line will be printed immediately following
 the line with asterisks (*) beneath the offending words.

 If the -d switch is used, ‘spell’ will use the files ‘dictname’
 and ‘dictname’dx for the dictionary and index.

 FILES
 dict - a dictionary file
 dictdx - the index generated by isam for the dictionary

 SEE ALSO
 isam - generate an index for pseudo-indexed-sequential access
 ospell - the script pipeline suggested in K&P for spelling
 errors

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES
 This is a skeleton spelling error detector. It is expected
 that various modifications to flesh it out will be performed
 for local use.

 -1-

219

 Split (1) 11-Jan-79 Split (1)

 NAME
 Split - split a file into pieces

 SYNOPSIS
 split [-n] [file [name]]

 DESCRIPTION
 Split reads ‘file’ and writes it in n-line pieces (default
 1000), as many as necessary, onto a set of output files. The
 name of the output file is ‘name’ with ‘aa’ appended, and so
 on lexicographically. If no output name is given, ‘x’ is
 default.

 If no input file is given, or if - is given in its stead, then
 the standard input file is used.

 FILES

 SEE ALSO
 The Unix command ’split’

 DIAGNOSTICS
 A message is printed if the input file could not be opened.

 AUTHORS
 Debbie Scherrer

 BUGS/DEFICIENCIES

 -1-

220

 Suspnd (1) 8-Jun-79 Suspnd (1)

 NAME
 Suspnd - suspend a running process

 SYNOPSIS
 suspnd processid [processid ...]

 DESCRIPTION
 suspnd suspends running processes specified by the processid’s
 in the command line. The processid’s are those returned by the
 shell when it spawns a background process.

 FILES
 none

 SEE ALSO
 sh - shell (command line interpreter)
 resume - resume a suspended process

 DIAGNOSTICS
 if the process cannot be suspended, an error message is
 displayed on error output.

 AUTHORS
 Joe Sventek (VAX)

 BUGS/DEFICIENCIES

 -1-

221

 Tail (1) 26-Aug-79 Tail (1)

 NAME
 Tail - print last lines of a file

 SYNOPSIS
 tail [-n] [file] ...

 DESCRIPTION
 Tail prints the last "n" lines of the indicated file. If ’n’
 is omitted, the last 23 lines are printed.

 If "file" is omitted or is "-", tail reads the standard input.

 SEE ALSO
 split

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES
 An internal buffer of MAXBUF characters is kept. If the value
 of "n" would require buffering more characters than the buffer
 can hold, tail prints the last MAXBUF characters of the file.
 In this case, the first line of output may not be an entire
 line. MAXBUF is a definition in the source code which may be
 adjusted.

 -1-

222

 Tee (1) 11-Jan-79 Tee (1)

 NAME
 Tee - copy input to standard output and named files

 SYNOPSIS
 tee [file] ...

 DESCRIPTION
 Tee copies the standard input to the standard output and makes
 copies in the named files.

 FILES

 SEE ALSO
 The tool ’cat’; the tool ’crt’; the Unix command ’tee’

 DIAGNOSTICS
 A message is printed if the input file cannot be opened.

 AUTHORS
 Debbie Scherrer

 BUGS/DEFICIENCIES

 -1-

223

 Timer (1) 8-Jun-79 Timer (1)

 NAME
 Timer - time execution of a process

 SYNOPSIS
 timer [-v] "command [arguments]"

 DESCRIPTION
 timer spawns a subprocess performing the requested command, and
 displays the CPU time and wall time which elapsed during the
 execution of the command on the standard output. The -v flag
 causes timer to display other system-dependent quantities
 concerning the subprocess performing the requested command.
 The command specified is searched for using the same search
 path as the shell.

 FILES
 none

 SEE ALSO
 The UNIX programmer’s manual, time(I)
 sh - shell (command line interpreter)

 DIAGNOSTICS
 <command> is an invalid image or script file name
 The requested command could not be found in the searched
 directories.
 Error in spawning <command>
 The requested image or script file was located, but the
 process to perform the command could not be spawned.

 AUTHORS
 Joe Sventek(VAX)

 BUGS/DEFICIENCIES

 -1-

224

 Tr (1) 6-Jul-78 Tr (1)

 NAME
 Tr - transliterate characters

 SYNOPSIS
 tr from [to]

 DESCRIPTION
 tr copies the standard input to the standard output with
 substitution or deletion of selected characters. Input
 characters found in ‘from’ are mapped into the corresponding
 characters of ‘to’. Ranges of characters may be specified by
 separating the extremes by a dash. For example, a-z stands
 for the string of characters whose ascii codes run from
 character a through character z.

 If the number of characters in ‘from’ is the same as in ‘to’,
 a one to one corresponding translation will be performed on
 all occurrences of the characters in ‘from’. If the number of
 characters in ‘from’ is more than in ‘to’, the implication is
 that the last character in the ‘to’ string is to be replicated
 as often as necessary to make a string as long as the ‘from’
 string, and that this replicated character should be collapsed
 into only one. If the ‘to’ string is missing or empty, "TR"
 will take this condition as a request to delete all
 occurrences of characters in the ‘from’ string.

 "TR" differs from the tool "CH" since it deals only with
 single characters or ranges of characters, while "CH" deals
 with character strings. For example tr xy yx would change
 all x’s into y’s and all y’s into x’s, whereas ch xy yx change
 all the patterns "xy" into "yx".

 One of the most common functions of "TR" is to translate upper
 case letters to lower case, and vice versa. Thus,

 tr A-Z a-z

 would map all upper case letters to lower case. Users of
 systems which cannot pass both upper and lower case characters
 on a command line should remember to include the appropriate
 escape flags.

 FILES
 none

 SEE ALSO
 Tools "find" and "ch".
 The "Software Tools" book, p.51-61.
 The "UNIX Programmer’s Manual", p. TR(I).

 -1-

225

 Tr (1) 6-Jul-78 Tr (1)

 DIAGNOSTICS
 "usage: tr from [to]."
 The command line passed to transit is in error.
 "from: too large."
 The string for "from" is too large. Current limit is 100
 characters including E0S.
 "to: too large."
 The string for "to" is too large. Current limit is 100
 characters including EOS.

 AUTHORS
 Original code from Kernighan and Plaugers’s "Software Tools",
 with modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -2-

226

 Tsort (1) 1-Oct-78 Tsort (1)

 NAME
 Tsort - topologically sort symbols

 SYNOPSIS
 tsort [file] ...

 DESCRIPTION
 tsort topologically sorts the symbols in the named files. If
 no files are specified, or the filename ’-’ is given, tsort
 reads the standard input.

 A symbol is considered any string of characters delimited by
 blanks or tabs.

 Each line of the input is assumed to be of the form

 a b c ...

 which states that a precedes b, a precedes c, and so on. Note
 that there is nothing implied about the ordering of b and c. A
 line consisting of a single symbol simply "declares" that
 symbol without specifying any ordering relations about it. The
 output is a topologically sorted list of symbols, one per
 line.

 For example, suppose you have trouble getting up in the morning
 because you can’t quite remember what actions have to be
 performed in which order. However, you do know that the first
 action in the following list precedes all others on the line:

 set_alarm turn_off_alarm
 wake_up get_out_of_bed turn_off_alarm
 set_alarm wake_up

 Using tsort to sort the above list would produce the following
 set of actions for getting out of bed:

 set_alarm
 wake_up
 turn_off_alarm
 get_out_of_bed

 DIAGNOSTICS
 circular
 The input specifies a graph that contains at least one
 cycle.

 out of storage
 The input is too large. The size of tsort’s buffer is
 determined by the MAXBUF definition in the source code.

 -1-

227

 Tsort (1) 1-Oct-78 Tsort (1)

 SEE ALSO
 sort

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES

 -2-

228

 Ttt (1) 15-Nov-81 Ttt (1)

 NAME
 Ttt - 3-dimensional tic tac toe

 SYNOPSIS
 ttt

 DESCRIPTION
 TTT is a 3-dimensional tic tac toe game played against the
 computer. The program will explain the rules.

 SEE ALSO
 The UNIX ‘‘ttt’’ program.

 AUTHORS
 Original Basic version by Joseph Roehrig.
 Converted to C by Dave Conroy.
 Converted to RatFor by Dave Martin.

 BUGS/DEFICIENCIES

 -1-

229

 Txtrpl (1) 11-Mar-82 Txtrpl (1)

 NAME
 Txtrpl - perform generalized text replacement

 SYNOPSIS
 txtrpl patfile ...

 DESCRIPTION
 ‘txtrpl’ provides a general way to perform text replacement
 (NOT regular expressions) without embedding the
 (text,replacement text) pairs in the source file. After
 loading the (text,replacement text) pairs from the named
 pattern files in the command line, ‘txtrpl’ reads words from
 standard input, looks each word up in a lookup table, and
 either writes out the replacement text on standard output or
 the word, depending upon whether it was found in the table or
 not. Only a single lookup is done. Words consist of letters,
 digits and underline (’_’) characters, starting with a letter.

 ‘txtrpl’s selection of candidate words for replacement is
 dependent upon ratfor program syntax, in that words inside of
 comments, quoted strings and character constants are not
 eligible for replacement. This fact can be exploited to
 generate source listings of ratfor code with boldfaced keywords
 by executing the following commands:

 alist file | txtrpl ˜bin/fmtpf

 The resulting output file can be piped into ‘os’ or ‘lpr’ for
 final disposition to a print device.

 The form of the pattern files is quite simple; each
 (text,replacement text) pair occupies a line. Leading blanks
 on the line are ignored, the token to be scanned for is the
 first word found, any intevening blanks are ignored, and the
 replacement text is everything else up to the end of line. In
 the regular language expression of the tools, each line is of
 the form

 %<BLANK>*[A-Za-z][A-Za-z0-9_]*<BLANK><BLANK>*??*$

 where <BLANK> represents a blank character. Case is important
 in the comparisons.

 FILES

 SEE ALSO
 macro - macro processor
 ed - text editor for description of regular expressions
 xch - extended change utility

 -1-

230

 Txtrpl (1) 11-Mar-82 Txtrpl (1)

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -2-

231

 Ul (1) 18-Aug-81 Ul (1)

 NAME
 Ul - convert backspaces into multiple lines for "terminals"

 SYNOPSIS
 ul [file] ...

 DESCRIPTION
 ul (underline) converts lines with BACKSPACE-UNDERLINE pairs
 into two lines; one with the text and one with only BLANK and
 UNDERLINE characters. These two lines are output separated by
 a CR with no associated LF. This approach works with printing
 terminals and some line printers, most notably Printronix and
 Trilog.

 If no files are given, or the filename ’-’ appears, input is
 taken from the standard input.

 FILES

 SEE ALSO
 lpr - queue file to line printer
 os - process overstrikes for "printers"

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Paul Johnstone (Hughes Aircraft)

 BUGS/DEFICIENCIES

 -1-

232

 Uniq (1) 11-Jan-79 Uniq (1)

 NAME
 Uniq - strip adjacent repeated lines from a file

 SYNOPSIS
 uniq [-c] [file] ...

 DESCRIPTION
 uniq reads the input file(s), comparing adjacent lines. Second
 and succeeding copies of repeated lines are removed; the
 remainder is written to standard output.

 If the ’-c’ flag is given, each line is preceded by a count of
 the number of occurrences of that line.

 FILES

 SEE ALSO
 The tool ’comm’; the Unix command ’uniq’

 DIAGNOSTICS
 A message is printed if an input file cannot be opened and
 processing is terminated.

 AUTHORS
 Originally from Kernighan and Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

233

 Unrot (1) 15-Jan-79 Unrot (1)

 NAME
 Unrot - unrotate lines rotated by kwic

 SYNOPSIS
 unrot [-n] [file] ...

 DESCRIPTION
 unrot processes the rotated output of ’kwic’ to generate a
 keyword-in-context index.

 The -n flag may be used to specify the width of the output
 lines. The default is 80.

 If no input files are given, or the filename ’-’ appears, lines
 will be read from standard input.

 FILES

 SEE ALSO
 kwic; sort

 DIAGNOSTICS
 A message is printed if an input file cannot be opened; further
 processing is terminated.

 AUTHORS
 Original from Kernighan and Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

234

 Wc (1) 15-Feb-79 Wc (1)

 NAME
 Wc - count lines, words, and characters in files

 SYNOPSIS
 wc [-lwc] [file] ...

 DESCRIPTION
 wc prints the number of lines, words, and characters in the
 named files. The filename "-" specifies the standard input. A
 total is also printed. A "word" is any sequence of characters
 delimited by white space.

 The options -l, -w, and -c specify, respectively, that only the
 line, word, or character count be printed. For example,

 wc -lc foo

 prints the number of lines and characters in "foo".

 If no files are given, wc reads its standard input and the
 total count is suppressed.

 FILES

 DIAGNOSTICS
 name: can’t open
 Printed when an input file can’t be opened; processing
 ceases

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES

 -1-

235

 Wcnt (1) 11-Jan-79 Wcnt (1)

 NAME
 Wcnt - (character) word count

 SYNOPSIS
 wcnt [file] ...

 DESCRIPTION
 wcnt counts (character) words in the named files, or in the
 standard input if no name appears. A word is a string of
 characters delimited by spaces, tabs, or newlines.

 wcnt could also be implemented as a shell script file:
 tr ’ @t@n’ ’@n’ | tr ’!@n’ | ccnt

 FILES

 SEE ALSO
 lcnt; ccnt; the Unix command ’wc’

 DIAGNOSTICS
 A message is printed if an input file could not be opened;
 further processing is terminated.

 AUTHORS
 Original from Kernighan and Plauger’s ’Software Tools’, with
 modifications by Debbie Scherrer.

 BUGS/DEFICIENCIES

 -1-

236

 Whereis (1) 2-May-81 Whereis (1)

 NAME
 Whereis - locate file in tree based on partial pathname

 SYNOPSIS
 whereis pat [anchor]

 DESCRIPTION
 ‘whereis’ recursively scans a directory tree looking for the
 regular expression given as the first argument. If no ‘anchor’
 argument is supplied, ‘whereis’ starts looking in the current
 directory and throughout the directory tree descending from the
 current directory. If ‘anchor’ is specified, the search starts
 at that directory. Valid patterns are the same as those for
 ‘ls’. The output from ‘whereis’ on standard output are fully
 resolved pathnames, complete with device information. It
 should be noted that a valid ‘anchor’ argument is "/", which
 indicates to ‘whereis’ that it should start looking in the
 "root" directory of the current disk, or "/dba0" to force it to
 start looking in the "root" directory for dba0:.

 FILES
 none

 SEE ALSO
 ls - directory lister
 find - find pattern, for regular expression syntax

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

237

 Who (1) 11-Jan-79 Who (1)

 NAME
 Who - show who is on the system

 SYNOPSIS
 who [-htv] [am i]

 DESCRIPTION
 who lists the name and terminal number for each current system
 user. The following switches affect the format of the listing:

 -h Generate a line of column headers above the display.
 -t Print the total number of users at bottom of display.
 -v Generate a verbose display, with system dependent
 information constituting the verbose portion.

 FILES

 SEE ALSO
 The Unix command ’who’

 DIAGNOSTICS

 AUTHORS
 Joe Sventek (DEC machines); Sheldon Furst (CDC machines)

 BUGS/DEFICIENCIES

 -1-

238

 Xch (1) 11-Mar-82 Xch (1)

 NAME
 Xch - extended change utility

 SYNOPSIS
 xch [-gpat] [-v] patfile ...

 DESCRIPTION
 ‘xch’ permits several global changes to be performed during one
 pass over the input data. During initialization, ‘xch’
 compiles the "/pat/sub/" lines found in the one (or more)
 pattern files specified in the arguments list. Then, standard
 input is read, and the equivalent of

 % ch "pat" "sub"

 is performed on each line.

 Normally, the substitutions are attempted on each input line.
 If the ‘-gpat’ option is selected, then the substitutions are
 attempted on only those lines which match ‘pat’. When the
 number of substitutions are large, this can substantially speed
 up the process.

 If the ‘-v’ flag is specified, for each line in which a
 substitution has occurred, the line number, followed by the old
 and new lines are displayed on error output.

 The format of the pattern files is quite simple: each
 "/pat/sub/" pair occupies a single line, with the first
 character of the line assumed to be the delimeter character.
 The complete regular expression syntax is supported, such that
 the lines in the pattern files are exactly equivalent to the
 ‘ed’ command with "s" prepended and "g" appended to the line.

 FILES

 SEE ALSO
 ch - change regular expressions
 find - find regular expressions
 xfind - extended find utility
 ed - text editor

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

239

 Xch (1) 11-Mar-82 Xch (1)

 -2-

240

 Xfind (1) 11-Mar-82 Xfind (1)

 NAME
 Xfind - entended find utility

 SYNOPSIS
 xfind patfile ...

 DESCRIPTION
 ‘xfind’ permits one to search for more than 10 expressions in
 one pass of the standard input file. During initialization,
 ‘xfind’ compiles the patterns found in the one (or more)
 pattern files specified in the argument list. Then, standard
 input is read, and each input line which matches any one of the
 patterns is output on standard output.

 The format of the pattern fils is quite simple: each line is
 taken to represent a single pattern. The complete regular
 expression syntax is supported.

 FILES

 SEE ALSO
 find - find regular expressions
 xch - extended change utility

 DIAGNOSTICS

 AUTHORS
 Joe Sventek

 BUGS/DEFICIENCIES

 -1-

241

 Xref (1) 1-Jan-79 Xref (1)

 NAME
 Xref - make a cross reference of symbols

 SYNOPSIS
 xref [-b<bias>] [-f] [file] ...

 DESCRIPTION
 xref produces a cross-reference list of the symbols in each of
 the named files on the standard output. Each symbol is listed
 followed by the numbers of the lines in which it appears. If
 no files are given, or the file "-" is specified, xref reads
 the standard input.

 A symbol is defined as a string of letters, digits, underlines,
 or periods that begins with a letter. Symbols exceeding an
 internal limit are truncated. This limit is determined by the
 MAXTOK definition in the source code, and is currently set to
 15.

 Normally, xref treats upper- and lower-case letters as
 different characters. The -f option causes all letters to be
 folded to lower-case.

 Normally, the line numbers specified in the symbol table are
 relative to the current file being processed. Specification of
 the ‘-b’ flag causes ‘<bias>’ to be added to each line number.

 DIAGNOSTICS
 out of storage
 The file contains too many symbols or references to fit
 within the current limitations of xref. The size of the
 buffer is determined by the MAXBUF definition in the source
 code.

 SEE ALSO
 axref - cross reference generator for archives

 AUTHORS
 David Hanson and friends (U. of Arizona)

 BUGS/DEFICIENCIES
 There should be a means of suppressing "junk" symbols such as
 "the", "a", etc.

 -1-

242

 ____ _ _ ____
/ ___| ___ ___| |_(_) ___ _ __ |___ \
___ \ / _ \/ __| __| |/ _ \| ’_ \ __) | _____
 ___) | __/ (__| |_| | (_) | | | | / __/ |_____|
|____/ ___|___|__|_|___/|_| |_| |_____|

 ____ _ ____ _ _
/ ___| _ _ ___| |_ ___ _ __ ___ / ___|__ _| | |___
___ \| | | / __| __/ _ \ ’_ ‘ _ \ | | / _‘ | | / __|
 ___) | |_| __ \ || __/ | | | | | | |__| (_| | | __ \
|____/ __, |___/_____|_| |_| |_| ______,_|_|_|___/
 |___/

243

NAME
 Intro - introduction to software tools primitives

 A (Not So) Primitive Document

 Joseph Sventek
 Computer Science & Applied Mathematics
 Lawrence Berkeley Laboratory
 Berkeley, CA 94720

 A complete writeup of the syntax and
 semantics of the primitive functions
 upon which the LBL Software Tools
 Virtual Operating System is based.

244

Intro (2) 11/17/80 Intro (2)

Basic assumptions of the tools concerning data types:

 ‘character’ is a signed integer data type of at least eight-bit
 accuracy. The internal representation of characters within the
 programs is the 7-bit ASCII code, with EOS being traditionally
 defined as 0 (NULL). This leaves 128 negative values for
 special flags such as EOF, ERR etc. Msg assumes that it can use
 200(8) (NULL with the high bit set) to pad NEWLINES in raw
 terminal I/O.

 Integers and characters are freely assigned to each other.
 Since the above assumption is made, normal FORTRAN compilers
 should perform this without any side effects.

 The data type ‘linepointer’ should be defined as an intrinsic
 FORTRAN data type large enough to hold the address of a record
 in a file. No arithmetic or assignments are done on
 linepointers, with all activities on these entities embodied in
 the routines ‘note’, ‘seek’, ‘ptreq’, ‘ptrcpy’, ‘ptrtoc’ and
 ‘ctoptr’. It is also assumed that a defined symbol NULLPOINTER
 exists and is different from any possible valid linepointer
 value.

Basic assumptions of the ratfor runtime system

 I/O redirection flags are interpreted (and removed from the
 argument list) before the tool’s main routine is called. In
 order to be able to pass arguments to the utility which start
 with the special characters ’<’, ’>’, or ’?’, quoted string
 arguments are not scanned when determining io redirection. The
 primitives, as currently defined, only handle character files,
 with the exception that ‘gettyp’ expects to be able to determine
 whether a file is BINARY or ASCII. It is expected that the
 primitives will be extended in the near future to handle ASCII,
 LOCAL and BINARY files unambiguously.

 ‘getarg(0)’ should return the name by which the process was
 invoked. This is useful if your system supports UNIX-style
 links, thus allowing an image to act differently depending upon
 which alias was used for its invocation. None of the tools
 currently use this capability.

 The first routine to be executed is named

 subroutine main

 It is assumed that all I/O redirection and command line fetching
 have been completed before ‘main’ is called. Upon completion,
 ‘main’ simply returns, which causes a return to the Tools

 -1-

245

Intro (2) 11/17/80 Intro (2)

 runtime system. In order to implement this feature, ‘ld’ is set
 up to extract a module from the library which is the FORTRAN
 main program, and usually consists of the following lines:

 call initst
 call main
 call endst(OK)
 end

 If such library extraction is not possible on a system, the
 above four line routine will have to be added to each tool.

Basic assumptions concerning RAW terminal I/O

 The routine ‘stmode’ is supplied to permit the use of RAW
 terminal I/O. In actuality, three modes are defined, RAW, RARE
 and COOKED. COOKED io implies that the system applies its own
 semantics concerning the control characters emitted by the
 terminal, and performs the echo of the characters for the user.
 RARE and RAW assume that all reads are done a character at a
 time, with no echo. RARE io assumes that there are certain
 control characters which the operating system will not
 relinquish its control of. These probably include XON, XOFF,
 terminal interrupt characters, etc. RARE is the mode of io used
 by all of the tools currently using RAW io, since they usually
 only wish to apply their own semantics to the actual printing
 characters. RAW io is handy if one wishes to write network
 control programs over asynchronous lines in ratfor (Don’t laugh,
 it’s being done!). With RAW io, it is assumed that the terminal
 driver is totally bypassed. On many systems, this capability
 requires enormous privilege and other funky resources, so none
 of the commonly available tools use it.

 -2-

246

 Amove (2) 18-Aug-81 Amove (2)

 NAME
 Amove - move (rename) file1 to file2

 SYNOPSIS
 integer function amove(name1, name2)

 character name1(ARB), name2(ARB)

 DESCRIPTION
 ‘amove’ moves the contents of the file specified by ‘name1’ to
 the file specified by ‘name2’. It is essentially a renaming of
 the file.

 Both file names are character strings representing pathnames or
 filenames in whatever format is expected by the local operating
 system. The names are passed as character arrays terminated
 with an EOS character.

 The files need not be opened by (connected to) the running
 program to be renamed.

 The function value returned is OK is successful or ERR if not.

 IMPLEMENTATION
 ‘amove’ could be easily implemented by opening the first file,
 creating the second, copying the first to the second, and then
 removing the first file. Alternatively, if possible, it could
 be implemented with a native system call to rename the file.

 SEE ALSO
 remove(2)

 DIAGNOSTICS
 If the rename fails for any reason, ERR is returned. ‘name1’
 is removed only if the rename succeeds.

 -1-

247

 Assign (2) 18-Aug-81 Assign (2)

 NAME
 Assign - open a file on the specified unit

 SYNOPSIS
 integer function assign(name, fd, access)

 character name(FILENAMESIZE)
 filedes fd
 integer access

 DESCRIPTION
 ‘assign’ is the equivalent of ‘open’ or ‘create’ on a
 particular ratfor I/O unit. If a file is currently open on
 ‘fd’, ‘assign’ closes it first. If ‘access’ has the value of
 READ, ‘assign’ then performs an ‘open’ on the specified unit.
 If ‘access’ has the value of WRITE, READWRITE or APPEND,
 ‘assign’ performs a ‘create’ on the specified unit. The
 function value returned is either the value of ‘fd’ if
 successful, or ERR.

 IMPLEMENTATION
 There has been much debate whether ‘assign’ should still be in
 the primitive set. The only tool which relies upon it is
 ‘sort’, since is does some fairly complex file manipulation
 during the external merge phase.

 SEE ALSO
 open(2), create(2), close(2)

 DIAGNOSTICS
 If the file could not be opened or created for any reason, the
 value ERR is returned. In this case, the previous file
 associated with ‘fd’ remains closed.

 -1-

248

 Brdcst (2) 12-Mar-82 Brdcst (2)

 NAME
 Brdcst - broadcast message to one or all terminals

 SYNOPSIS
 integer function brdcst(msg, dev)

 character msg(ARB), dev(ARB)

 return(OK/ERR)

 DESCRIPTION
 ‘brdcst’ broadcasts the message in ‘msg’ to the terminal
 specified by the ‘dev’ argument. If ‘dev’ is the string "all",
 the message is broadcast to all logged in terminals on the
 system.

 IMPLEMENTATION
 ‘brdcst’ is heavily dependent upon whether the operating system
 supports such a notion. In addition, some systems support
 broadcasts only for very privileged users. This routine is
 only used by ‘sndmsg’ and ‘mail’ to notify users of mail
 delivery, and can safely be implemented as a stub.

 SEE ALSO
 trmlst(2)

 DIAGNOSTICS
 Returns ERR if the message cannot be broadcast.

 -1-

249

 Chmod (2) 12-Mar-82 Chmod (2)

 NAME
 Chmod - change protection mode on file

 SYNOPSIS
 integer function chmod(name, mode)

 character name(ARB)
 integer mode

 return(OK/ERR)

 DESCRIPTION
 ‘chmod’ attempts to change the protection on the file ‘name’ to
 the value specified in ‘mode’. It returns the value OK/ERR
 reflecting the degree of success in the operation.

 IMPLEMENTATION
 The only current use of ‘chmod’ is in the ‘rm’ tool using the
 ‘-f’ flag. In that situation, ‘mode’ is passed as an integer
 of all ones. Before ‘chmod’ can become generally useful, some
 system-independent way of specifying the protection on a file
 needs to be devised. It is totally permissible to implement
 this as a stub always returning the value ERR.

 SEE ALSO
 rm(1)

 DIAGNOSTICS
 Return a value of ERR if the mode change could not be
 performed.

 -1-

250

 Closdr (2) 18-Aug-81 Closdr (2)

 NAME
 Closdr - close an opened directory

 SYNOPSIS
 subroutine closdr(fd)

 filedes fd

 DESCRIPTION
 ‘closdr’ closes the directory that is currently opened and
 associated with the internal descriptor ‘fd’, which was
 returned by the ‘opendr’ function.

 IMPLEMENTATION

 SEE ALSO
 opendr(2)

 DIAGNOSTICS
 If ‘fd’ is an invalid descriptor, or if no opened directory is
 currently associated with ‘fd’, ‘closdr’ returns with no error
 message.

 -1-

251

 Close (2) 18-Aug-81 Close (2)

 NAME
 Close - close (detach) a file

 SYNOPSIS
 subroutine close(fd)

 filedes fd

 DESCRIPTION
 ‘close’ closes the connection between a file and the running
 program. Any write buffers are flushed and the file is
 rewound.

 ‘fd’ is an internal file descriptor as returned from an ‘open’
 or ‘create’ call.

 IMPLEMENTATION
 ‘close’ breaks the connection between the program and a file
 accessed via ‘open’ or ‘create’. If necessary, the file’s
 write buffer is flushed and the end of the file is marked so
 that subsequent reads will find an EOF. If a file has been
 opened multiple times (that is, more than one internal
 descriptor has been assigned to a file), care is taken that
 multiple closes will not damage the file.

 SEE ALSO
 open(2), create(2)

 DIAGNOSTICS
 If the file descriptor is in error, the routine simply
 returns.

 -1-

252

 Create (2) 20-Aug-81 Create (2)

 NAME
 Create - create a new file (or overwrite an existing one)

 SYNOPSIS
 filedes function create(name, access)

 character name(ARB)
 integer access

 DESCRIPTION
 ‘create’ creates a new file from within a running program and
 connects the external name of the file to an internal
 identifier which is then usable in subsequent subroutine
 calls. If the file already exists, the old version will be
 overwritten. In this case, the file should be truncated
 immediately by ‘create’.

 ‘name’ is a character string representing a pathname or
 filename in whatever format is used by the local operating
 system. It is passed as a character array terminated by an EOS
 character.

 ‘access’ is a integer descriptor for the type of access desired
 - WRITE, READWRITE or APPEND.

 The value returned is a "filedes" internal descriptor to be
 used in subsequent I/O calls on this file.

 IMPLEMENTATION
 ‘create’ is similar to ‘open’ except that ‘create’ generates a
 new file if it does not already exist, whereas ‘open’ returns
 an error on such occasions.

 SEE ALSO
 open(2), close(2)

 DIAGNOSTICS
 The function returns ERR if the file could not be created or if
 there are already too many files open.

 -1-

253

 Ctoptr (2) 20-Aug-81 Ctoptr (2)

 NAME
 Ctoptr - convert character string into linepointer

 SYNOPSIS
 subroutine ctoptr(buf, i, ptr)

 character buf(ARB)
 integer i
 linepointer ptr

 DESCRIPTION
 ‘ctoptr’ converts the characters starting at location ‘buf(i)’
 into a linepointer value and stores the value in the variable
 ‘ptr’. The value of ‘i’ is incremented to point to the next
 available location in ‘buf’.

 IMPLEMENTATION

 SEE ALSO
 ptreq(2), ptrcpy(2), note(2), seek(2), ptrtoc(2)

 DIAGNOSTICS
 none

 -1-

254

 Cwdir (2) 20-Aug-81 Cwdir (2)

 NAME
 Cwdir - change current working directory

 SYNOPSIS
 integer function cwdir(name)

 character name(FILENAMESIZE)

 DESCRIPTION
 ‘cwdir’ changes the current working directory to that specified
 by ‘name’. ‘name’ is a character string representing a
 pathname or whatever format is expected by the local operating
 system. ‘name’ is passed as a character array terminated by an
 EOS character.

 The return value is either OK or ERR depending upon the success
 of the operation. If the operation fails, the current working
 directory should be restored to the previous value.

 IMPLEMENTATION

 SEE ALSO
 gwdir(2)

 DIAGNOSTICS
 A value of ERR is returned if the operation is unsuccessful.

 -1-

255

 Delarg (2) 20-Aug-81 Delarg (2)

 NAME
 Delarg - mask the existence of specified command line argument

 SYNOPSIS
 subroutine delarg(n)

 integer n

 DESCRIPTION
 ‘delarg’ masks the existence of the command line argument
 number ‘n’ so that subsequent calls to ‘getarg’ do not see it.

 IMPLEMENTATION
 ‘delarg’ works in conjunction with ‘getarg’. It generally
 re-orders indices to an array holding the command line
 arguments fetched by ‘makarg’. ‘delarg’ is currently only used
 by the shell.

 SEE ALSO
 getarg(2), initst(2)

 DIAGNOSTICS
 If argument ‘n’ does not exist, ‘delarg’ simply returns.

 -1-

256

 Enbint (2) 20-Aug-81 Enbint (2)

 NAME
 Enbint - enable trapping of terminal interrupts

 SYNOPSIS
 subroutine enbint

 DESCRIPTION
 ‘enbint’ is used by the shell to trap interrupt characters
 typed by the user at the terminal. ‘enbint’ assumes that there
 will be a routine named ‘intsrv’ which will be called whenever
 a terminal interrupt is typed. The canonical semantics of
 ‘intsrv’ is to kill all sub-processes of the current process
 and return. This generally results in the return of error
 notifications to ‘spawn’, which returns the error to the shell,
 after which the shell prompts for another command.

 IMPLEMENTATION
 ‘enbint’ has been implemented on only three machines, and is
 not very well defined. In all of the implementations to date,
 ‘enbint’ checks to make sure that the caller is the top shell
 in the process tree associated with the user. This prevents
 ‘enbint’ from being generally called from other programs. It
 is hoped that a firmer specification for this routine will be
 available in the near future.

 If this routine is difficult to implement, it may be left as a
 stub.

 SEE ALSO
 intsrv(2)

 DIAGNOSTICS
 If the enabling of the interrupt cannot be performed, the
 current implementations simply return.

 -1-

257

 Endst (2) 20-Aug-81 Endst (2)

 NAME
 Endst - perform system-dependent cleanup and terminate ratfor
 program

 SYNOPSIS
 subroutine endst(status)

 integer status

 DESCRIPTION
 ‘endst’ is normally implicitly called when the ‘main’
 subroutine executes a return. ‘endst’ closes all open files,
 performs any necessary system-dependent cleanup and terminates
 the program’s execution.

 If it is possible, endst should communicate the termination
 status (OK/ERR/CHILD_ABORTED) to the outside world.

 ‘endst’ is also called by ‘error’ to terminate the program.

 IMPLEMENTATION

 SEE ALSO
 close(2), initst(2)

 DIAGNOSTICS
 none

 -1-

258

 Filnfo (2) 20-Aug-81 Filnfo (2)

 NAME
 Filnfo - determine filename and access on open unit

 SYNOPSIS
 integer function filnfo(fd, file, access)

 filedes fd
 integer access
 character file(FILENAMESIZE)

 DESCRIPTION
 ‘filnfo’ returns the name and access of the file open on ‘fd’
 to the user. If the unit is open, ‘filnfo’ returns OK as its
 value, otherwise it returns ERR.

 IMPLEMENTATION

 SEE ALSO

 DIAGNOSTICS
 If the file specified by ‘fd’ is not open, a value of ERR is
 returned.

 -1-

259

 Gdraux (2) 20-Aug-81 Gdraux (2)

 NAME
 Gdraux - get auxiliary information about a file

 SYNOPSIS
 subroutine gdraux(fd, file, aux, date, fmtstr)

 character file(FILENAMESIZE), aux(MAXLINE), date(TCOLWIDTH)
 character fmtstr(ARB)
 filedes fd

 DESCRIPTION
 ‘gdraux’ retrieves auxiliary information on a particular file
 in a directory. ‘fd’ is the directory descriptor returned from
 an ‘opendr’ call and ‘file’ is a filename returned from a
 ‘gdrprm’ call. The auxiliary information is returned in the
 character array ‘aux’, while ‘date’ receives a "sortable" date
 string of size (TCOLWIDTH-1) which can be used to sort files by
 significant date.

 The information placed into ‘aux’ is dependent upon the format
 string passed in ‘fmtstr’. The format string specifies the
 output information as follows:

 b size of file in blocks (normally 512 characters)

 c size of file in characters

 m modification date and time (dd-mmm-yy hh:mm:ss)

 n filename

 o file owner’s username

 p protection codes

 t file type (asc|bin|dir)

 The ‘b’, ‘c’, ‘n’ and ‘o’ options accept an integer prefix
 which specifies the field width to be used.

 IMPLEMENTATION
 This is admittedly a stop-gap measure until a more useful and
 penetrating primitive is devised to permit the retrieval of
 extra information about a file. The only utility which uses
 ‘gdraux’ currently is ‘ls’, the directory lister. The sortable
 date field can be anything that the primitive implementor
 desires, but it is strongly suggested that it be a sortable
 version of whatever significant date the operating system keeps
 on the file, so that the "-t" flag in ‘ls’ performs up to
 specification.

 -1-

260

 Gdraux (2) 20-Aug-81 Gdraux (2)

 EXAMPLES
 The verbose option of ‘ls’ uses the format string "17n p m 6b o".

 SEE ALSO
 opendr(2), gdrprm(2)

 DIAGNOSTICS
 If the auxiliary information cannot be obtained for a
 particular file, a message to that effect is returned in ‘aux’,
 and ‘date’ is given a value such that it will sort out first
 when sorting by date.

 -2-

261

 Gdrprm (2) 20-Aug-81 Gdrprm (2)

 NAME
 Gdrprm - get next filename from directory

 SYNOPSIS
 integer function gdrprm(fd, file)

 character file(FILENAMESIZE)
 filedes fd

 DESCRIPTION
 ‘gdrprm’ retrieves the next sequential filename from the open
 directory associated with ‘fd’ and places it in the character
 array ‘file’ as an EOS-terminated string. If there is an error
 reading the directory or no more filenames are contained in the
 directory, a value of EOF is returned; otherwise, OK is
 returned. The filenames are retrieved sequentially, with no
 particular order (alphabetic, by date, etc.) guaranteed.

 IMPLEMENTATION
 If there are lots of noise characters (version numbers, null
 extensions, etc.), these are often stripped from the filename
 before it is returned.

 SEE ALSO
 gdraux(2), opendr(2)

 DIAGNOSTICS
 A value of EOF is returned whenever there are no more directory
 entries or an error reading the directory is detected.

 -1-

262

 Getarg (2) 20-Aug-81 Getarg (2)

 NAME
 Getarg - get command line arguments

 SYNOPSIS
 integer function getarg(n, array, maxsiz)

 character array(maxsiz)
 integer n, maxsiz

 DESCRIPTION
 ‘getarg’ gets command arguments from the command line or
 control card and copies the ‘n’th command line argument into
 the character array ‘array’, terminating it with an EOS
 character. ‘maxsiz’ is passed as the maximum number of
 characters ‘array’ is prepared to deal with (including the EOS
 character); ‘getarg’ truncates the argument if necessary to
 fit into the space provided. The number or characters in the
 argument (not including the EOS character) is returned in the
 functional call. If there are less than ‘n’ arguments, EOF is
 returned. Calling ‘getarg’ with ‘n’ having the value of 0
 should result in the return of the name by which the image was
 invoked.

 IMPLEMENTATION
 The implementation of ’getarg’ may be quite different on
 different operating systems. Some systems allow only upper
 case (or lower case) on the command line; they may limit size;
 they may not even provide access at all without considerable
 contortions.

 When implementing ‘getarg’, the designer should keep in mind
 that a ‘delarg’ will also be needed. One possible design would
 be to create a routine ‘makarg’, which would pick up the
 arguments from the system, convert them to ascii strings,
 handle any upper-lower case escape conventions, and store them
 in an array. ‘getarg’ could then access this array, stripping
 off any quoted strings surrounding the arguments, and passing
 them along to the user. ‘delarg’ could also access this array
 when removing reference to arguments.

 If it is absolutely impossible to pick up command line
 arguments from the system, ‘getarg’ could be taught to prompt
 the user for them.

 When the shell is implemented, ‘getarg’ (or perhaps ‘makarg’)
 may have to be altered to read arguments as passed from the
 shell.

 SEE ALSO
 initst(2), delarg(2)

 -1-

263

 Getarg (2) 20-Aug-81 Getarg (2)

 DIAGNOSTICS
 none

 -2-

264

 Getch (2) 20-Aug-81 Getch (2)

 NAME
 Getch - read character from file

 SYNOPSIS
 character function getch(c, fd)

 character c
 filedes fd

 DESCRIPTION
 ‘getch’ reads the next character from the file specified by
 ‘fd’. The character is returned in ASCII format both as the
 functional return and in the parameter ‘c’. If the end of a
 line has been encountered, NEWLINE is returned. If the end of
 the file has been encountered, EOF is returned.

 If the unit ‘fd’ is a RAW or RARE terminal unit, then getch
 actually gets the next character from the terminal WITH NO
 ECHO.

 IMPLEMENTATION
 Interspersed calls to ‘getch’ and ‘getlin’ should interleave
 properly. A common implementation is to have ‘getlin’ make
 repeated calls to ‘getch’.

 If the input file is not ASCII, characters are mapped into
 their ASCII equivalent.

 SEE ALSO
 getlin(2), putch(2), putlin(2), stmode(2)

 DIAGNOSTICS
 If an error occurs during the reading of the file, the value
 ERR is returned.

 -1-

265

 Getdir (2) 26-Oct-81 Getdir (2)

 NAME
 Getdir - get directory string for known Tools directory

 SYNOPSIS
 subroutine getdir(key, dtype, name)

 character name(FILENAMESIZE)
 integer key, dtype

 DESCRIPTION
 ‘getdir’ returns the directory string for any of the known
 Tools directories. The directory string is returned as a
 character array terminated by an EOS character. The format of
 ‘name’ is determined by the value of ‘dtype’, with LOCAL
 generating a string in local format, and PATH causes a pathname
 directory string to be returned. The valid values of ‘key’ and
 their corresponding directories are:

 BINDIRECTORY ˜bin/
 USRDIRECTORY ˜usr/
 TMPDIRECTORY ˜tmp/
 LPRDIRECTORY ˜lpr/
 MSGDIRECTORY ˜msg/
 MANDIRECTORY ˜man/
 SRCDIRECTORY ˜src/
 INCDIRECTORY ˜inc/
 LIBDIRECTORY ˜lib/

 If an invalid key is specified, a null string is returned.

 IMPLEMENTATION

 SEE ALSO

 DIAGNOSTICS
 If an invalid key is specified, a null string is returned.

 -1-

266

 Getlin (2) 21-Aug-81 Getlin (2)

 NAME
 Getlin - get next line from file

 SYNOPSIS
 integer function getlin(line, fd)

 character line(MAXLINE)
 filedes fd

 DESCRIPTION
 ‘getlin’ copies the next line from the file specified by the
 internal identifier ‘fd’ into the character array ‘line’.
 Characters are copied until a NEWLINE character is found or
 until MAXLINE-1 characters have been copied. The characters
 are returned with the character array terminated by an EOS
 character.

 ‘getlin’ returns EOF when it encounters an end-of-file,
 otherwise it returns the line length (including NEWLINE,
 excluding EOS).

 Interspersed calls to ‘getlin’ and ‘getch’ are permitted and
 should work properly.

 IMPLEMENTATION
 If the external representation of characters is not ASCII, the
 characters are mapped into their ASCII equivalents.

 ‘getlin’ assumes a maximum size (MAXLINE) of the array ‘line’.
 If the input line exceeds the limit, only the first "limit-1"
 characters are returned, with the remainder of the line either
 being ignored or returned on the next ‘getlin’ call.

 A common implementation is to have ‘getlin’ call getch until a
 NEWLINE character is found (or the buffer size is exceeded or
 EOF is reached).

 If the underlying disk structure is record oriented (as opposed
 to stream oriented), it may be more efficient to have ‘getlin’
 get the next record in the same way that ‘getch’ does, to avoid
 the overhead of repeated calls to ‘getch’.

 Use of ‘getlin’ on RAW terminal units is of questionable
 utility, since the repeated ‘getch’ calls perform a READ WITH
 NO ECHO, and would only terminate when the user types a CTRL/J
 (LINEFEED) character. All utilities which use RAW I/O have
 their own line gathering routines.

 SEE ALSO
 getch(2), putch(2), putlin(2), stmode(2)

 -1-

267

 Getlin (2) 21-Aug-81 Getlin (2)

 DIAGNOSTICS
 none

 -2-

268

 Getnow (2) 20-Aug-81 Getnow (2)

 NAME
 Getnow - determine current date and time

 SYNOPSIS
 subroutine getnow (now)

 integer now (7)

 DESCRIPTION
 ’Getnow’ is used to query the operating system for the current
 date and time. The requested information is returned in a
 seven-word integer array, where:

 word 1 contains the year (e.g. 1980);
 word 2 contains the month (e.g. 9);
 word 3 contains the day (e.g. 25);
 word 4 contains the hour (e.g. 13);
 word 5 contains the minute (e.g. 39);
 word 6 contains the second (e.g. 14);
 word 7 contains the millisecond (e.g. 397).

 The information returned by ’getnow’ may be used as-is or
 further useful processing may be done by ’fmtdat’ or ’wkday’.

 IMPLEMENTATION
 Operating systems generally have some mechanism for picking up
 the current date and time. If yours has one, use it.

 Getnow is not critical to the implementation of the tools and
 can be left as a stub if the operating system cannot supply the
 needed information.

 ARGUMENTS MODIFIED
 now

 BUGS/DEFICIENCIES
 Some systems cannot obtain all the time information described.
 Array elements that cannot be filled default to zero.

 SEE ALSO
 fmtdat(3), wkday(3), date(1)

 -1-

269

 Gettyp (2) 20-Aug-81 Gettyp (2)

 NAME
 Gettyp - get type of file

 SYNOPSIS
 integer function gettyp(fd, type)

 filedes fd
 integer type

 DESCRIPTION
 ‘gettyp’ determines whether the file opened on unit ‘fd’ is
 ascii characters (ASCII), local characters (LOCAL, if different
 from ASCII) or binary(BINARY). The type is returned as the
 value of the function and as the value of the parameter
 ‘type’. If the file is empty or new, ASCII is returned.

 ‘fd’ is the file identifier returned from an ‘open’ or ‘create’
 call.

 IMPLEMENTATION
 When a file is opened (via a call to ‘open’ or ‘create’), an
 internal flag is usually set which specifies the file type.
 ‘gettyp’ then simply reads the flag. The file type may have
 been determined by locating system information about the file
 or by actually reading part of it and making a reasonable
 guess.

 ‘gettyp’ is called by the archiver to store a file’s type in
 the archiver header. The shell also uses ‘gettyp’ to determine
 whether a command verb given by the user represents a script
 file or an image file. If the verb corresponds to a character
 file, the shell spawns itself with the file as input. If
 ‘gettyp’ cannot be implemented on a particular system, a stub
 returning BINARY should be placed in the library, which will
 force the user to execute script files in the following manner:

 % sh <script ...

 SEE ALSO
 create(2), open(2)

 DIAGNOSTICS
 ERR is returned if the file descriptor is incorrect.

 -1-

270

 Gtmode (2) 20-Aug-81 Gtmode (2)

 NAME
 Gtmode - determine mode of ratfor unit

 SYNOPSIS
 integer function gtmode(fd)

 filedes fd

 DESCRIPTION
 ‘gtmode’ determines the mode of io on the unit ‘fd’, returning
 one of the values RAW, RARE or COOKED. If the unit is not
 currently opened, the value ERR is returned.

 IMPLEMENTATION

 SEE ALSO
 stmode(2)

 DIAGNOSTICS
 If ‘fd’ is not currently open, a value of ERR is returned.

 -1-

271

 Gtzone (2) 12-Mar-82 Gtzone (2)

 NAME
 Gtzone - get time zone of requestor

 SYNOPSIS
 subroutine gtzone(buf)

 character buf(4)

 DESCRIPTION
 ‘gtzone’ returns to the requestor the 3-character mnemonic for
 the time zone, terminated by an EOS character.

 IMPLEMENTATION
 A typical way of implementing this routine is to simply strcpy
 a string into the buffer. This routine may return a null
 string.

 SEE ALSO

 DIAGNOSTICS

 -1-

272

 Gwdir (2) 20-Aug-81 Gwdir (2)

 NAME
 Gwdir - get current working directory

 SYNOPSIS
 subroutine gwdir(name, dtype)

 character name(FILENAMESIZE)
 integer dtype

 DESCRIPTION
 ‘gwdir’ returns the current working directory string in
 ‘name’. If ‘dtype’ has the value LOCAL, the directory string
 is returned in the form desired by the local operating system.
 If ‘dtype’ has the value of PATH, the directory string is
 returned in pathname format. The directory string is returned
 as a character array terminated by an EOS character.

 IMPLEMENTATION

 SEE ALSO
 cwdir(2)

 DIAGNOSTICS
 none

 -1-

273

 Homdir (2) 20-Aug-81 Homdir (2)

 NAME
 Homdir - return the home directory for this process

 SYNOPSIS
 subroutine homdir(home, dtype)

 character home(FILENAMESIZE)
 integer dtype

 DESCRIPTION
 ‘homdir’ returns the home directory string for the current
 process. If ‘dtype’ has the value LOCAL, the directory string
 is returned in the form native to the local operating system; a
 value of PATH causes it to be returned in pathname format. It
 is returned as an EOS terminated string. If this information
 cannot be determined, a stub which returns an EOS in home(1)
 will suffice.

 IMPLEMENTATION

 SEE ALSO
 tooldr(3)

 DIAGNOSTICS
 none

 -1-

274

 Initst (2) 20-Aug-81 Initst (2)

 NAME
 Initst - initialize ratfor runtime environment

 SYNOPSIS
 subroutine initst

 DESCRIPTION
 Normally, ‘initst’ is implicitly called before the main
 subroutine of the user’s program is called. ‘initst’ opens
 STDIN, STDOUT and ERROUT, performing any redirections specified
 in the command line and masking those redirections from the
 current process. The remainder of the command line arguments
 are prepared for retrieval via ‘getarg’, and any other
 system-dependent initialization is performed.

 IMPLEMENTATION
 The standard I/O units are generally opened in the order
 ERROUT, STDIN and STDOUT. If an error occurs during the
 opening of ERROUT, some system-dependent method of reporting
 the error will need to be used, whereas if an error occurs
 while opening STDIN or STDOUT, ERROUT can be used to report
 it. The fetching of command line arguments from the operating
 system is in the domain of ‘initst’, as well as any
 initializations of common data areas needed by the other
 primitive functions.

 SEE ALSO
 endst(2), getarg(2), delarg(2)

 DIAGNOSTICS
 If ‘initst’ cannot function for some reason, the program should
 abort with a diagnostic message.

 -1-

275

 Intsrv (2) 20-Aug-81 Intsrv (2)

 NAME
 Intsrv - interrupt service routine for tty interrupts

 SYNOPSIS
 subroutine intsrv

 DESCRIPTION
 ‘intsrv’ is the routine called whenever a terminal interrupt
 character has been typed after ‘enbint’ has been called to
 enable the trapping of these interrupts. The canonical
 semantics of ‘intsrv’ is to kill all sub-processes of the
 current process. Other functions may be embedded in ‘intsrv’.

 IMPLEMENTATION
 ‘enbint’ and ‘intsrv’ are not very well defined. It is hoped
 that their definitions will become firmer in the near future.

 If ‘enbint’ has been implemented as a stub, then ‘intsrv’ may
 also be implemented as such.

 SEE ALSO
 enbint(2)

 DIAGNOSTICS
 If during the course of its duties, ‘intsrv’ encounters an
 error, it should notify the user in some way. This may be
 tricky, due to the asynchronous nature of its work.

 -1-

276

 Isatty (2) 20-Aug-81 Isatty (2)

 NAME
 Isatty - determine if file is an interactive device

 SYNOPSIS
 integer function isatty(fd)

 filedes fd

 DESCRIPTION
 ‘isatty’ returns the value YES if the file specified by ‘fd’ is
 an interactive device, otherwise it returns NO. ‘fd’ is a file
 identifier returned by a call to ‘open’ or ‘create’.

 IMPLEMENTATION
 When a file is opened, a flag is usually set indicating what
 device the file is associated with. ‘isatty’ usually just
 reads this flag.

 ‘isatty’ is used by several tools (‘ls’, ‘ar’ and ‘users’) to
 determine whether to format their output in columns or not. It
 may also be used to determine whether to prompt for input or
 not.

 SEE ALSO
 open(2), create(2)

 DIAGNOSTICS
 NO is returned if ‘fd’ is in error.

 -1-

277

 Loccom (2) 20-Aug-81 Loccom (2)

 NAME
 Loccom - locate command along specified search path

 SYNOPSIS
 integer function loccom(in, spath, suffix, out)

 character in(FILENAMESIZE), out(FILENAMESIZE), spath(ARB)
 character suffix(ARB)

 DESCRIPTION
 ‘loccom’ searches for the command passed as an EOS-terminated
 character array in ‘in’ along the search path specified by
 ‘spath’, returning the fully-qualified file specification in
 the character array ‘out’. For each element of the search
 path, all suffixes passed in ‘suffix’ are appended to ‘in’ and
 an open at READ access is attempted. The type of the file thus
 found (ASCII or BINARY) is returned as the value of the
 function. If the command cannot be found, the value ERR should
 be returned and the string ‘in’ copied to ‘out’.

 The structure of ‘spath’ and ‘suffix’ is:

 string_1@estring_2@e...string_N@e@n

 where ‘@e’ represents an EOS character and ‘@n’ represents a
 NEWLINE character. A null directory name indicates searching
 the current working directory.

 IMPLEMENTATION

 SEE ALSO
 spawn(2)

 DIAGNOSTICS
 If the command cannot be found, a value of ERR is returned and
 the command string is returned in ‘out’.

 -1-

278

 Mailid (2) 20-Aug-81 Mailid (2)

 NAME
 Mailid - return username

 SYNOPSIS
 subroutine mailid(user)

 character user(USERSIZE)

 DESCRIPTION
 ‘mailid’ returns the name of the user of the current process as
 an EOS terminated string. This name is then used by the mail
 system.

 IMPLEMENTATION
 Most operating systems permit the user to determine some unique
 identifier of the person (or account) on whose behalf the
 current process is running. The third field of each entry in
 the mail system’s database file is dedicated to such an
 identifier, so that mailid could be implemented by determining
 the identifier, opening ˜msg/address and reading records until
 an entry with that identifier is found, and returning the
 username (field one of the record) in the array ‘user’.
 ‘mailid’ is essential for the correct working of the mail
 system.

 SEE ALSO
 homdir(2)

 DIAGNOSTICS
 If the record could not be found in the database, some nonsense
 username should be returned in ‘user’.

 -1-

279

 Mklocl (2) 20-Aug-81 Mklocl (2)

 NAME
 Mklocl - convert string to fully qualified local file
 specification

 SYNOPSIS
 call mklocl(in, out)

 character in(FILENAMESIZE), out(FILENAMESIZE)

 DESCRIPTION
 ‘mklocl’ converts the input filename ‘in’, which may be in
 pathname format or a partial local file specification, to a
 fully qualified local file specification.

 IMPLEMENTATION
 Initially, ‘mklocl’ could be a stub, simply ‘scopy’ing ‘in’ to
 ‘out’. ‘mklocl’ is used by the tools ‘fc’ and ‘ld’.

 SEE ALSO
 mkpath(2)

 DIAGNOSTICS
 none

 -1-

280

 Mkpath (2) 17-Nov-80 Mkpath (2)

 NAME
 Mkpath - convert string to fully resolved path name

 SYNOPSIS
 call mkpath(in, out)

 character in(FILENAMESIZE), out(FILENAMESIZE)

 DESCRIPTION
 ‘mkpath’ converts the input filename ‘in’, which may be in
 pathname format or a partial local file specification, to a
 fully qualified pathname.

 IMPLEMENTATION
 Initially, ‘mkpath’ could be a stub, simply ‘scopy’ing ‘in’ to
 ‘out’. ‘mkpath’ is used by the tools ‘alist’ and ‘ls’.

 SEE ALSO
 mklocl(2)

 DIAGNOSTICS
 None

 -1-

281

 Note (2) 13-Nov-78 Note (2)

 NAME
 Note - determine current file position

 SYNOPSIS
 stat = note (offset, fd)

 linepointer offset
 filedes fd
 integer stat returned as OK/ERR

 DESCRIPTION
 Note determines the current value of a file’s read/write
 pointer. The argument "offset" is a linepointer that will
 receive the information. Offset is maintained untouched by the
 user and passed to "seek" when desiring to return to that
 particular location in the file.

 Note is usually used as the file is being written, picking up
 the pointer to the end of the file before each record is
 inserted there.

 On text files (e.g. those created by calls to putch, putlin),
 note is guaranteed to work at line boundaries only. However,
 it should work anywhere on a file created by calls to writef.

 IMPLEMENTATION
 Note is compatible with whatever implementation is chosen for
 seek and the opening of files at READWRITE access.

 Offset is a linepointer in which is stored a character count,
 word address, block and record address, or whatever is
 appropriate for the local operating system. Note should be
 taught to return BEGINNING_OF_FILE and END_OF_FILE where
 appropriate.

 In the editor, note is called to locate the end of file for
 subsequent writes.

 SEE ALSO
 seek(2), readf(2), writef(2)

 DIAGNOSTICS
 None

 -1-

282

 Open (2) 20-Aug-81 Open (2)

 NAME
 Open - open an existing file

 SYNOPSIS
 filedes function open(name, access)

 character name(ARB)
 integer access

 DESCRIPTION
 ‘open’ attaches an existing file to a running program and
 associates the external file name with an internal identifier
 for use in other I/O routines. Several opens of a file at READ
 access are permitted.

 ‘name’ is a character string representing a pathname or
 filename in whatever format is used by the local operating
 system. It is passed as a character array terminated with an
 EOS character.

 ‘access’ is a descriptor for the type of access desired - READ,
 WRITE, READWRITE or APPEND.

 The returned value of the function is a "filedes" descriptor to
 be used in other I/O routines when referring to this file.

 The file is positioned at the beginning, unless APPEND access
 is specified, in which case the file is prepared for
 extension.

 IMPLEMENTATION
 ‘open’ connects the file to the running program and performs
 those manipulations necessary to allow reading and/or writing
 to the file. An internal descriptor is assigned to the file
 and subsequently used when calling other primitives such as
 close, getch, putch, getlin, and putlin.

 ‘open’ may have to set up an internal I/O buffer for the file.
 It may also have to do an initial read to determine the file
 type (ASCII or BINARY). Information about the file’s type and
 teletype characteristics (YES or NO) is generally maintained.
 This information is then made available to the user via the
 ‘gettyp’ and ‘isatty’ functions.

 ‘open’ is generally taught to read characters of ASCII type as
 well as LOCAL character type (if different from ASCII).
 Translation of characters from LOCAL to ASCII is done in
 getch/getlin and vice versa for putch/putlin.

 There is generally a limit to the maximum number of files open

 -1-

283

 Open (2) 20-Aug-81 Open (2)

 at any one time. None of the tools require more than 7.

 READWRITE access may cause problems. Both ‘ed’ and ‘msg’ use
 this access on their scratch buffer files. If necessary, you
 may have to implement these functions by opening the file
 twice, one at READ and once at WRITE access.

 SEE ALSO
 create(2), close(2)

 DIAGNOSTICS
 ‘open’ returns ERR if the file does not exist, if the file is
 not readable/writable or if too many files are open.

 -2-

284

 Opendr (2) 20-Aug-81 Opendr (2)

 NAME
 Opendr - open directory for reading filenames

 SYNOPSIS
 filedes function opendr(name, fd))

 character name(FILENAMESIZE)
 filedes fd

 DESCRIPTION
 ‘opendr’ opens the specified directory for READ access via
 ‘gdrprm’. All write access to directories is implicitly done
 with the ‘amove’, ‘create’ and ‘remove’ primitives. ‘name’ is
 a character string representing the directory as a pathname or
 whatever format is expected by the local operating system. The
 name is passed as a character array terminated by an EOS
 character.

 ‘fd’ is a "filedes" descriptor for use in other directory
 manipulation primitives. The value returned by the function is
 the value of ‘fd’ or ERR.

 IMPLEMENTATION
 ‘opendr’ is the directory equivalent to ‘open’ at READ access.
 It prepares the directory for sequential access to the
 filenames stored there.

 SEE ALSO
 closdr(2), gdrprm(2), gdraux(2), amove(2), create(2), remove(2)

 DIAGNOSTICS
 A value of ERR is returned if the directory could not be
 opened, or too many directories have already been opened.

 -1-

285

 Prompt (2) 20-Aug-81 Prompt (2)

 NAME
 Prompt - get next line from file, prompting if a terminal

 SYNOPSIS
 integer function prompt(pstr, line, fd)

 character pstr(ARB), line(MAXLINE)
 filedes fd

 DESCRIPTION
 ‘prompt’ is identical to ‘getlin’, with the exception that if
 ‘fd’ corresponds to a terminal unit, the prompt string ‘pstr’
 will be displayed before the read is performed. The line read
 will be placed in ‘line’ with the possible return values being
 identical with those of ‘getlin’. If ‘fd’ does not correspond
 to a terminal unit, ‘prompt’ simply performs a ‘getlin’.

 There is no implicit <CARRIAGE-RETURN, LINEFEED> pair at the
 end of the prompt string (otherwise, there would be no need for
 this primitive). If embedded NEWLINES are found in the prompt
 string, they should result in <CARRIAGE-RETURN, LINEFEED> pairs
 being output on the terminal at the appropriate locations.

 If after outputting the prompt string and reading the line
 ‘prompt’ sees the NEWLINE character preceeded by an ’@’, the
 ’@’ should be replaced by a BLANK, a secondary prompt string
 consisting of pstr(1) followed by an ’_’ (underscore) should be
 displayed, and another line fetched into the buffer after the
 inserted BLANK. This process should be repeated until the
 NEWLINE is not escaped, or MAXLINE characters have been
 fetched.

 IMPLEMENTATION
 The output of the prompt string is conditionalized upon
 isatty(fd) == YES
 Since ‘fd’ generally is associated with an ‘open’ at READ
 access, ‘prompt’ may have to temporarily open a unit to the
 terminal at WRITE access in order to display the prompt
 string.

 SEE ALSO
 putlin(2)

 DIAGNOSTICS
 none

 -1-

286

 Ptrcpy (2) 20-Aug-81 Ptrcpy (2)

 NAME
 Ptrcpy - copy linepointers

 SYNOPSIS
 subroutine ptrcpy(in, out)

 linepointer in, out

 DESCRIPTION
 ‘ptrcpy’ copies the linepointer variable ‘in’ to the
 linepointer variable ‘out’.

 IMPLEMENTATION

 SEE ALSO
 ptreq(2), note(2), seek(2)

 DIAGNOSTICS
 none

 -1-

287

 Ptreq (2) 20-Aug-81 Ptreq (2)

 NAME
 Ptreq - determine if two linepointers are equal

 SYNOPSIS
 integer function ptreq(ptr1, ptr2)

 linepointer ptr1, ptr2

 DESCRIPTION
 ‘ptreq’ checks for the equality of the two linepointers passed
 as ‘ptr1’ and ‘ptr2’. If they are equal, the value YES is
 returned, otherwise NO is returned.

 IMPLEMENTATION

 SEE ALSO
 ptrcpy(2), note(2), seek(2)

 DIAGNOSTICS
 none

 -1-

288

 Ptrtoc (2) 20-Aug-81 Ptrtoc (2)

 NAME
 Ptrtoc - format linepointer into characters

 SYNOPSIS
 integer function ptrtoc(ptr, buf, size)

 linepointer ptr
 character buf(size)
 integer size

 DESCRIPTION
 ‘ptrtoc’ generates a printable character string which
 represents the value of the linepointer variable ‘ptr’. The
 characters are placed in the buffer ‘buf’. If the formatted
 buffer would exceed ‘size’ characters (including the EOS), only
 ‘size’ characters are placed in ‘buf’. The length of the
 formatted string is returned as the value of the function.

 IMPLEMENTATION

 SEE ALSO
 ptreq(2), ptrcpy(2), note(2), seek(2), ctoptr(2)

 DIAGNOSTICS
 none

 -1-

289

 Putch (2) 20-Aug-81 Putch (2)

 NAME
 Putch - write character to file

 SYNOPSIS
 subroutine putch(c, fd)

 character c
 filedes fd

 DESCRIPTION
 ‘putch’ writes the character ‘c’ onto the file specified by
 ‘fd’. If ‘c’ is the NEWLINE character, the appropriate action
 is taken to indicate the end of the record on the file. The
 character is assumed to be in ASCII format; if the external
 representation is not ASCII, the necessary conversion is done.

 If fd’ corresponds to a RAW or RARE terminal unit, the
 character ‘c’ is immediately written to the terminal with no
 interpretation by the native operating system’s terminal
 handler.

 IMPLEMENTATION
 Interspersed calls to ‘putch’ and ‘putlin’ should work
 properly.

 SEE ALSO
 putlin(2), getch(2), getlin(2), stmode(2)

 DIAGNOSTICS
 If an error occurs when a record is flushed, an ugly error
 message will appear on your terminal.

 -1-

290

 Putlin (2) 20-Aug-81 Putlin (2)

 NAME
 Putlin - output a line onto a given file

 SYNOPSIS
 subroutine putlin(line, fd)

 character line(ARB)
 filedes fd

 DESCRIPTION
 ‘putlin’ outputs the character array ‘line’ onto the file
 specified by ‘fd’. ‘line’ is an ASCII character array
 terminated with an EOS character. NEWLINE characters are
 permitted in the array, with the effect of flushing the record
 since the last NEWLINE character. If none is specified, no
 carriage-return (or end-of-record) is assumed. If the external
 representation is not ASCII, translation occurs before writing
 the record.

 If ‘fd’ is a RAW or RARE mode terminal unit, the ‘line’ buffer
 is written immediately to the terminal, with no interpretation
 by the terminal driver.

 IMPLEMENTATION
 Interspersed calls to ‘putch’ and ‘putlin’ are permitted. A
 common implementation for COOKED mode units is to have ‘putlin’
 call ‘putch’ until an EOS character is found.

 SEE ALSO
 putch(2), getch(2), getlin(2), stmode(2)

 DIAGNOSTICS
 none

 -1-

291

 Readf (2) 20-Aug-81 Readf (2)

 NAME
 Readf - read from an opened file

 SYNOPSIS
 count = readf(buf, n, fd)

 character buf(ARB)
 integer n
 filedes fd
 integer count returned as count/EOF

 DESCRIPTION
 Readf reads ‘n’ bytes from the file opened on file descriptor
 ‘fd’ into the array ‘buf’. The bytes are placed in ‘buf’ one
 per array element. Readf is the typical way of doing binary
 reads on files. Readf returns the number of bytes actually
 read. In most cases, this is equal to ‘n’. However, it may be
 less if an EOF has been encountered or if ‘fd’ specified a
 device such as a terminal where less than ‘n’ bytes were
 input.

 IMPLEMENTATION
 Readf is the typical way of implementing binary I/O. Do
 whatever is necessary on your system to allow users to get at
 the file directly.

 If reasonable, design readf to work properly in conjunction
 with getch and getlin.

 SEE ALSO
 writef(2), getch(2), putch(2)

 DIAGNOSTICS
 none

 -1-

292

 Remark (2) 20-Aug-80 Remark (2)

 NAME
 Remark - print single-line message

 SYNOPSIS
 subroutine remark(messag)

 character messag(ARB)

 DESCRIPTION
 ‘remark’ writes the message onto the standard error file
 ERROUT. A NEWLINE is always generated, even though one may not
 appear in the message.

 The ‘messag’ array is generally a Fortran hollerith string in
 the format generated by the Ratfor quoted string capability.
 It may also be an character array terminated with an EOS
 character.

 IMPLEMENTATION
 If a quoted string is used as the argument to remark, it
 should, by convention, be terminated by a PERIOD (‘.’). This
 permits all implementations to locate the end of the string to
 print. If a NEWLINE character is not found at the end of the
 string, one must be ‘putch’ed to ERROUT.

 SEE ALSO
 putlin(2)

 DIAGNOSTICS
 none

 -1-

293

 Remove (2) 20-Aug-81 Remove (2)

 NAME
 Remove - delete a file from the file system

 SYNOPSIS
 integer function remove(name)

 character name(FILENAMESIZE)

 return(OK/ERR)

 DESCRIPTION
 ‘remove’ deletes a file from the file system when invoked from
 a running program. ‘name’ is a character string representing a
 pathname or filename in whatever format is used by the local
 operating system. It is passed as a character array terminated
 by an EOS character.

 The function value returned should be OK/ERR depending upon the
 success of the delete operation. Deletion of a non-existent
 file should result in a return of OK.

 IMPLEMENTATION
 The file to be removed need not be opened before remove is
 called. If the file is currently open on other units, remove
 should display an error message.

 SEE ALSO
 open(2), close(2), create(2)

 DIAGNOSTICS
 If an error occurs, a value of ERR is returned.

 -1-

294

 Scratf (2) 20-Aug-81 Scratf (2)

 NAME
 Scratf - generate unique scratch file name

 SYNOPSIS
 subroutine scratf(seed, name)

 character seed(ARB), name(FILENAMESIZE)

 DESCRIPTION
 ‘scratf’ is used to generate unique scratch file names. ‘seed’
 is passed as a character array terminated by an EOS character,
 and will be used to make this scratch file name unique with
 respect to other scratch files generated by this process. The
 scratch file name generated is returned in ‘name’ as an
 EOS-terminated character array. Only the first three (3)
 characters of ‘seed’ are guaranteed to be used, so the user
 should be sure that all ‘seed’s used in the program are unique
 in the first three characters.

 IMPLEMENTATION
 ‘scratf’ is used to avoid conflicts which occur when more than
 one user is logged in under a single user or directory name.
 The optimal implementation would be to return an absolutely
 unique file name based upon ‘seed’, which can often be achieved
 via some manipulation of the process name or id. It is common
 practice to have all scratch files generated by the tools
 reside in a common scratch file directory.

 On single-user systems or systems which support the notion of
 "local files", ‘scratf’ can simply return ‘seed’ as ‘name’.

 SEE ALSO
 getdir(2)

 DIAGNOSTICS
 If the file name could not be generated, a message should be
 printed.

 -1-

295

 Seek (2) 20-Aug-81 Seek (2)

 NAME
 Seek - move read/write pointer

 SYNOPSIS
 subroutine seek(addres, fd)

 linepointer addres
 filedes fd

 DESCRIPTION
 ‘seek’ positions the file specified by ‘fd’ for a subsequent
 read or write beginning at ‘addres’. ‘addres’ is a variable of
 type linepointer containing the system-dependent address of the
 record, which was originally obtained by a call to ‘note’.

 If a write is performed after a ‘seek’, the file is truncated
 after that line, due to the sequential nature of the Tool’s
 I/O.

 IMPLEMENTATION
 ‘seek’ is generally used on files opened at READWRITE access.
 The units of ‘addres’ are chosen to be whatever is most
 appropriate for the system involved.

 SEE ALSO
 note(2), ptrcpy(2), ptreq(2)

 DIAGNOSTICS
 none

 -1-

296

 Sleep (2) 20-Aug-81 Sleep (2)

 NAME
 Sleep - stop process for period of time

 SYNOPSIS
 subroutine sleep(secnds)

 integer secnds

 DESCRIPTION
 ‘sleep’ causes the current process to suspend itself for the
 period of time specified in the parameter ‘secnds’. Control
 resumes at the next instruction after the call sleep statement
 when the time period has elapsed.

 IMPLEMENTATION
 The only utility which uses ‘sleep’ is ‘sched’. Therefore, it
 is not necessary, although such a facility will make many
 real-time tasks easier to solve

 SEE ALSO

 DIAGNOSTICS
 none

 -1-

297

 Spawn (2) 20-Aug-81 Spawn (2)

 NAME
 Spawn - initiate sub-process

 SYNOPSIS
 integer function spawn(image, args, pid, waitfl)

 character image(FILENAMESIZE), args(ARGBUFSIZE), pid(PIDSIZE), waitfl

 DESCRIPTION
 ‘spawn’ causes the initiation of a sub-process. ‘image’ is an
 EOS-terminated character array specifying the filename of the
 image to be initiated, in either pathname or local file
 format.

 ‘args’ is a character array specifying the command line to be
 passed to the sub-process. The name by which the image was
 invoked should be the first word in the argument buffer. If
 the string passed in ‘image’ is equal to the string "local",
 then ‘args’ should contain the native command line to be passed
 to the local command language interpreter.

 If ‘waitfl’ == WAIT & equal(image, "local") == NO, ‘spawn’
 should scan ‘args’ for redirection of STDOUT and ERROUT. If
 either of these units are not redirected, the corresponding
 unit should be closed, and an APPEND redirection to that file
 should be formatted into ‘args’ for the child. When the child
 process completes, the unit should be re-opened at APPEND
 access, thus permitting the correct interleaving of output on
 these units between parent and child processes.

 ‘pid’ is an array to receive the process id of the spawned
 sub-process. This id may then be used in other process control
 primitives.

 ‘waitfl’ is a flag indicating whether the parent process wishes
 to synchronize its execution with the termination of the
 sub-process. If the value of WAIT is specified, ‘spawn’ will
 not return control until the sub-process has completed. If
 NOWAIT is specified, ‘spawn’ immediately returns to the caller
 (for use with real pipes). Processes spawned with this flag
 are required to exit when the parent process exits. If BACKGR
 is specified, the sub-process is spawned in the background and
 control is immediately returned to the caller. Background
 process come to life with the standard I/O units directed to
 the null device, and have an existence totally independent of
 that of the parent. It is common to have the background
 processes run at a lower priority than foreground processes.

 If an error occurs during the initiation of the sub-process,
 ERR is returned to the user. If the sub-process abnormally

 -1-

298

 Spawn (2) 20-Aug-81 Spawn (2)

 exits when WAIT has been specified, a value of CHILD_ABORTED is
 returned. Otherwise, OK is returned.

 IMPLEMENTATION
 ‘spawn’ is normally the most difficult primitive to implement.
 A few of the major obstacles which must be overcome are:

 1. Does the operating system permit a running process to
 spawn a sub-process? If it provides a multi-user,
 interactive environment, it most certainly could, but it
 may not be common knowledge as to how to do it.

 2. Once one has determined how to spawn the process, it is
 necessary to determine how to control it. If the
 operating system does not provide any synchronization
 methods, they must be implemented.

 3. Finally, one must determine how to communicate the
 arguments and environment information to the sub-process.
 This generally entails an exploration of the
 system-provided interprocess-communication mechanisms, and
 often requires the invention of better ones.

 SEE ALSO

 DIAGNOSTICS
 A value of ERR is returned if an error occurs during
 sub-process initiation. If the sub-process exits abnormally
 when ‘waitfl’ had a value of WAIT, CHILD_ABORTED is returned.

 -2-

299

 Stmode (2) 20-Aug-81 Stmode (2)

 NAME
 Stmode - change mode on terminal unit to RAW/RARE/COOKED

 SYNOPSIS
 integer function stmode(fd, mode)

 filedes fd
 integer mode

 DESCRIPTION
 ‘stmode’ is used to change an open ratfor unit, ‘fd’, to a
 different mode of operation, as specified by ‘mode’. The
 default mode when a unit is opened or created is COOKED. If
 the unit corresponds to an interactive device, it is permitted
 to change the mode to RARE or RAW. The value to which the mode
 is set is returned as the value of the function.

 IMPLEMENTATION
 ‘stmode’ usually sets a flag for the particular unit, such that
 future ‘getch’ and ‘putch’ calls on the unit will be performed
 correctly for the given mode of operation. If the unit
 specified is not currently associated with a particular file,
 the value of ERR will be returned.

 SEE ALSO
 getch(2), putch(2)

 DIAGNOSTICS
 If the unit is not currently associated with a file, the value
 of ERR is returned.

 -1-

300

Symbols (2) 18-Aug-81 Symbols (2)

NAME
 Symbols - standard symbol definitions

#================= GENERAL SYMBOL DEFINITIONS =================

General definitions for software tools
Should be put on a file named ’symbols’
Used by all the tools; read automatically by preprocessor

Many of these symbols may change for your particular machine.
The values provided are intended as guidelines, and may
well serve you adequately, but don’t hesitate to change them if
necessary.

In particular, the following might have to change for your system:
TERMINAL_IN
TERMINAL_OUT
MAXLINE
FILENAMESIZE
DRIVER and DRETURN
MAXOFILES
character

Also, watch out for the following definitions, which
may conflict with the Fortran operators on your system:
AND OR NOT

Many of the definitions will be used in character variables.
They must be defined to be something other than a valid ascii
character--such as a number > 255 or a negative number.
If you have defined "character" to be "integer", then you may
use either a very large number or a small negative number.
If you have defined "character" to be something like an 8-bit
signed field, you’ll need to use negative numbers.
Use of a standard integer (whatever is the default size on your
machine) is STRONGLY recommended, despite the apparent waste of
storage.

The following constants affect conditional pre-processing

define(VAX_VMS,) # Define CPU and Operating system.
define(LARGE_ADDRESS_SPACE,) # this is defined if the user has at least
 # 18 address bits for use
define(TREE_STRUCT_FILE_SYS,) # this is defined is the file system is
 # tree structured
define(SORTED_DIRECTORIES,) # defined if the directories are inherently
 # sorted

301

Symbols (2) 18-Aug-81 Symbols (2)

ASCII control character definitions:

define(NUL,0)
define(SOH,1)
define(STX,2)
define(ETX,3)
define(EOT,4)
define(ENQ,5)
define(ACK,6)
define(BEL,7)
define(BS,8)
define(HT,9)
define(LF,10)
define(VT,11)
define(FF,12)
define(CR,13)
define(SO,14)
define(SI,15)
define(DLE,16)
define(DC1,17)
define(DC2,18)
define(DC3,19)
define(DC4,20)
define(NAK,21)
define(SYN,22)
define(ETB,23)
define(CAN,24)
define(EM,25)
define(SUB,26)
define(ESC,27)
define(FS,28)
define(GS,29)
define(RS,30)
define(US,31)
define(SP,32)
define(DEL,127)

Synonyms for ASCII control characters

define(BACKSPACE,8)
define(BELL,7)
define(BLANK,32)
define(CARRIAGE_RETURN,13)
define(NEWLINE,10)
define(RUBOUT,127)
define(TAB,9)

Printable ASCII characters:

302

Symbols (2) 18-Aug-81 Symbols (2)

define(ACCENT,96)
define(AMPER,38) # ampersand
define(AMPERSAND,AMPER)
define(AND,AMPER)
define(ATSIGN,64)
define(BACKSLASH,92)
define(BANG,33) # exclamation mark
define(BAR,124)
define(BIGA,65)
define(BIGB,66)
define(BIGC,67)
define(BIGD,68)
define(BIGE,69)
define(BIGF,70)
define(BIGG,71)
define(BIGH,72)
define(BIGI,73)
define(BIGJ,74)
define(BIGK,75)
define(BIGL,76)
define(BIGM,77)
define(BIGN,78)
define(BIGO,79)
define(BIGP,80)
define(BIGQ,81)
define(BIGR,82)
define(BIGS,83)
define(BIGT,84)
define(BIGU,85)
define(BIGV,86)
define(BIGW,87)
define(BIGX,88)
define(BIGY,89)
define(BIGZ,90)
define(CARET,94)
define(COLON,58)
define(COMMA,44)
define(DASH,45) #same as MINUS
define(DIG0,48)
define(DIG1,49)
define(DIG2,50)
define(DIG3,51)
define(DIG4,52)
define(DIG5,53)
define(DIG6,54)
define(DIG7,55)
define(DIG8,56)
define(DIG9,57)
define(DOLLAR,36)
define(DQUOTE,34)

303

Symbols (2) 18-Aug-81 Symbols (2)

define(EQUALS,61)
define(ESCAPE,ATSIGN) # escape char for ch, find, tr, ed, and sh.
define(GREATER,62)
define(LBRACE,123)
define(LBRACK,91)
define(LESS,60)
define(LETA,97)
define(LETB,98)
define(LETC,99)
define(LETD,100)
define(LETE,101)
define(LETF,102)
define(LETG,103)
define(LETH,104)
define(LETI,105)
define(LETJ,106)
define(LETK,107)
define(LETL,108)
define(LETM,109)
define(LETN,110)
define(LETO,111)
define(LETP,112)
define(LETQ,113)
define(LETR,114)
define(LETS,115)
define(LETT,116)
define(LETU,117)
define(LETV,118)
define(LETW,119)
define(LETX,120)
define(LETY,121)
define(LETZ,122)
define(LPAREN,40)
define(MINUS,45)
define(NOT,BANG) # used in pattern matching; choose ˜, ^, or !
define(OR,BAR)
define(PERCENT,37)
define(PERIOD,46)
define(PLUS,43)
define(QMARK,63)
define(RBRACE,125)
define(RBRACK,93)
define(RPAREN,41)
define(SEMICOL,59)
define(SHARP,35)
define(SLASH,47)
define(SQUOTE,39)
define(STAR,42)
define(TAB,9)
define(TILDE,126)

304

Symbols (2) 18-Aug-81 Symbols (2)

define(UNDERLINE,95)

Ratfor language extensions:

define(andif,if)
define(ARB,1000)
define(character,logical*1) # define character data type
define(CHARACTER,character)
define(DS_DECL,integer $1($2);character c$1(arith($2,*,CHAR_PER_INT));
equivalence (c$1(1),$1(1));common/cdsmem/$1)
define(PB_DECL,integer pbp, pbsize; character pbbuf($1);
common/cpback/pbp, pbsize, pbbuf)
define(cvt_to_cptr,(CHAR_PER_INT*($1-1)+1)) # convert pointer to char ptr
define(elif,else if)
define(filedes,integer) # file descriptor/designator data type
define(FILEDES,filedes)
define(IS_DIGIT,(DIG0<=$1&$1<=DIG9)) # valid only for ASCII!
define(IS_LETTER,(IS_UPPER($1)|IS_LOWER($1)))
define(IS_LOWER,(LETA<=$1&$1<=LETZ))
define(IS_UPPER,(BIGA<=$1&$1<=BIGZ))
define(long_real,double precision)
define(linepointer,real*8)
define(NULLPOINTER,-1)
define(LINEPTRSIZE,MAXCHARS)
define(pointer,integer)
define(POINTER,integer)

Input/output modes:

define(APPEND,4)
define(PRINT,5) # print file access
define(READ,1)
define(READWRITE,3)
define(WRITE,2)

Standard input/output ports:

define(ERROUT,3) # standard error file
define(STDERR,ERROUT)
define(STDIN,1) # standard input file
define(STDOUT,2) # standard output file

TERMINAL_IN and TERMINAL_OUT are the names of the I/O channels
from and to the user’s terminal, respectively. It’s highly likely
there is no such thing on your system; in this case, simply invent

305

Symbols (2) 18-Aug-81 Symbols (2)

a name that is not likely to conflict with any file name.
For example, the VAX/VMS version of the tools uses "TT", the RSX/11M
version uses "TI:", the DEC 10 version uses "tty:", and the Prime
version uses "/dev/tty".
Note that you must make the ’open’ primitive recognize this name
and provide access to the terminal accordingly.

define(TTY_NAME,"TT")
define(TERMINAL_IN,TTY_NAME)
define(TERMINAL_OUT,TTY_NAME)

Manifest constants included for readability and modifiability:

define(ALPHA,-9)
define(ASCII,12) # flag for ascii character file
define(BEGINNING_OF_FILE,-2) # flag to seek for positioning at
 # the beginning of a file
define(BINARY,60) # flag for indicating binary file
define(CHILD_ABORTED,101) # possible status return from spawn
define(DIGIT,2)
define(END_OF_FILE,-1) # flag to seek for positioning at
 # end of file
define(EOF,-1)
define(EOS,0)
define(ERR,-3)
define(HUGE,30000) # some arbitrarily large number
define(LAMBDA,0) # end of list marker
define(LETTER,1)
define(LOCAL,6) # flag for local-type character file
define(NO,0)
define(NOERR,0) # flag for successful completion
define(OK,0) # success flag
define(PATH,5) # type == PATH
define(TMO,-4) # error return for timeout (dpm 8-Jun-81)
define(USERSIZE,20) # size of username returned by userid
define(YES,1)

Size limiting definitions for important objects:

define(FILENAMESIZE,100) # max characters in file name
 # (including EOS)
define(MAXARG,MAXLINE) # max size of command line argument
define(MAXARGS,25) # some tools require this for max no of args
define(MAXCHARS,20) # max nbr of chars when converting
 # from integers to characters
 # (used by putint, outnum, etc.)
define(MAXLINE,512) # normal size of line buffers;
 # must be at least 1 more than MAXCARD

306

Symbols (2) 18-Aug-81 Symbols (2)

define(MAXCARD,arith(MAXLINE,-,1))
define(MAXNAME,FILENAMESIZE) # max size of file name
define(MAXOFILES,15) # max nbr opened files allowed at a time
define(MAXPAT,128) # max size of encoded patterns
 # (used in string matching)
define(NCHARS,33) # number of special characters

Machine-dependent parameters: (VAX)

define(BITS_PER_CHAR,8)
define(BITS_PER_WORD,32) # (dpm 8-Jun-81)
define(CHARS_PER_WORD,4) # (dpm 8-Jun-81)
define(CHAR_PER_INT,4)
define(MAX_INTEGER,1073241823) # 2**30 - 1 (dpm 8-Jun-81)
define(MIN_INTEGER,-1073241824) # -2**30 - 1 (dpm 8-Jun-81)
define(MAX_REAL_EXP,38)
define(MIN_REAL_EXP,-37) # (dpm 8-Jun-81)
define(REAL_PRECISION,7) # (dpm 8-Jun-81)

DRIVER is defined as those things you need to do to start a Software
Tools program running. The following is a common approach, but you
may have to change it (for example, by adding a "program" card).
Many machines will require no special driver procedure other than
the call to ’initst’.

define(DRIVER,subroutine main # $1)

DRETURN is used to finish up a Software Tools program:

define(DRETURN,return) # (returning from subroutine defined in DRIVER)

Definitions for ’spawn’ primitive (if implemented):

define(WAIT,LETW) # wait for subprocess to complete
define(NOWAIT,LETN) # control returns as soon as
 # subprocess starts
define(BACKGR,LETB) # spawning a background process
define(PIDSIZE,9)
define(ARGBUFSIZE,512)

rawmode io definitions

define(COOKED,0) # line-at-a-time (record) io
define(RAW,1) # char-at-a-time (unfiltered) io
define(RARE,2) # char-at-a-time (with interrupts) io

307

Symbols (2) 18-Aug-81 Symbols (2)

definitions for obtaining directory strings

define(BINDIRECTORY,1)
define(USRDIRECTORY,2)
define(TMPDIRECTORY,3)
define(LPRDIRECTORY,4)
define(MSGDIRECTORY,5)
define(MAILDIRECTORY,5)
define(MANDIRECTORY,6)
define(SRCDIRECTORY,7)
define(INCDIRECTORY,8)
define(LIBDIRECTORY,9)

definitions needed for directory operations

define(TCOLWIDTH,24) # width of date string returned by gdraux
define(MAXDIRECTS,10) # max number of path fields in file spec

definitions needed for double integer manipulations

define(initdi,{$1(1) = 0; $1(2) = 0})
define(incrdi,{$1(2) = $1(2) + 1; if($1(2) >= 10000)
{$1(1) = $1(1) + 1; $1(2) = 0}})
define(decrdi,{$1(2) = $1(2) - 1; if($1(2) < 0)
{$1(1) = $1(1) - 1; $1(2) = 9999}})
define(adddi,{$2(1) = $2(1) + $1(1); $2(2) = $2(2) + $1(2);
if ($2(2) >= 10000){$2(1) = $2(1) + 1; $2(2) = $2(2) - 10000}})
define(subdi,{$2(1) = $2(1) - $1(1); $2(2) = $2(2) - $1(2);
if ($2(2) < 0){$2(1) = $2(1) - 1; $2(2) = $2(2) + 10000}})

It may be necessary to add special definitions; for example
names of important directories, substitute routine names for
Software Tools primitives that conflict with local subprograms,
etc.

define(putc,putch($1,STDOUT))
define(getc,ifelse($1,,getch,getch($1,STDIN)))
define(putdec,putint($1,$2,STDOUT))
define(index,indexx)
define(INDEX,index)
define(SS_NORMAL,1)
define(BOTH_SUFFIX,".sh@e.exe@e@n")
define(IMAGE_SUFFIX,".exe@e@n")
define(NO_SUFFIX,"@e@n")
define(mkuniq,scratf)
special definitions for pwait
define(ANDWAIT,51)
define(ORWAIT,50)
define(TERMSGSIZE,21)

308

 Trmlst (2) 12-Mar-82 Trmlst (2)

 NAME
 Trmlst - list terminal a user is logged onto

 SYNOPSIS
 integer function trmlst(user, tlist)

 character user(ARB), tlist(ARB)

 return(number of terminals found)

 DESCRIPTION
 ‘trmlst’ scans the system for the names of all terminals upon
 which ‘user’ is logged onto, and returns the names as
 blank-separated tokens in the array ‘tlist’. The number of
 terminals found is returned as the value of the function.

 IMPLEMENTATION
 As for ‘brdcst’, this may be a difficult function to provide.
 It may be safely implemented as a stub returning 0. It is only
 used by ‘sndmsg’ and ‘mail’ to notify users of mail.

 SEE ALSO
 brdcst(2)

 DIAGNOSTICS
 Returns 0 if the user is not currently logged in.

 -1-

309

 Writef (2) 20-Aug-81 Writef (2)

 NAME
 Writef - write to an opened file

 SYNOPSIS
 count = writef(buf, n, fd)

 character buf(ARB)
 integer n
 filedes fd
 integer count returned as count/ERR

 DESCRIPTION
 Writef writes ‘n’ bytes from the array ‘buf’ to the file opened
 on file descriptor ‘fd’. Writef is the typical way of doing
 binary writes to files.

 Writef returns the number of bytes actually written. In most
 cases, this is equal to ‘n’. If, however, a write error
 occurs, writef returns ERR.

 IMPLEMENTATION
 Writef is the typical way of implementing binary I/O. Do
 whatever is necessary on your system to allow users to get at
 the file directly.

 If reasonable, design writef to work properly in conjunction
 with putch and putlin.

 SEE ALSO
 readf(2), putch(2), putlin(2)

 DIAGNOSTICS
 none

 -1-

310

 ____ _ _ _____
/ ___| ___ ___| |_(_) ___ _ __ |___ /
___ \ / _ \/ __| __| |/ _ \| ’_ \ |_ \ _____
 ___) | __/ (__| |_| | (_) | | | | ___) | |_____|
|____/ ___|___|__|_|___/|_| |_| |____/

 _ _ _ ____ _ _
| | (_) |__ _ __ __ _ _ __ _ _ | _ \ ___ _ _| |_(_)_ __ ___ ___
| | | | ’_ \| ’__/ _‘ | ’__| | | | | |_) / _ \| | | | __| | ’_ \ / _ \/ __|
| |___| | |_) | | | (_| | | | |_| | | _ < (_) | |_| | |_| | | | | __/__ \
|_____|_|_.__/|_| __,_|_| __, | |_| ____/ __,_|__|_|_| |_|___||___/
 |___/

311

 Acopy (3) 15-Mar-82 Acopy (3)

 NAME
 Acopy - copy n characters from one file to another

 SYNOPSIS
 subroutine acopy(ifd, ofd, n)

 integer n
 filedes ifd, ofd

 DESCRIPTION
 ‘acopy’ copies ‘n’ characters from ‘ifd’ to ‘ofd’, both of
 which are assumed open. If an EOF is encountered on ‘ifd’
 before ‘n’ characters have been copied, the routine simply
 returns.

 SEE ALSO

 DIAGNOSTICS
 none

 -1-

312

 Adddi (3) 15-Mar-82 Adddi (3)

 NAME
 Adddi - add double integers together

 SYNOPSIS
 adddi(dbl1,dbl2)

 integer dbl1(2), dbl2(2)

 expands into:

 {
 dbl2(1) = dbl2(1) + dbl1(1)
 dbl2(2) = dbl2(2) + dbl1(2)
 if (dbl2(2) >= 10000)
 {
 dbl2(1) = dbl2(1) + 1
 dbl2(2) = dbl2(2) - 10000
 }
 }

 DESCRIPTION
 Invocation of this macro causes the first double integer
 argument to be added to the second. If a carry is necessary,
 it is performed. See the entry for ‘initdi’ for more
 information on double integers.

 SEE ALSO
 initdi(3), incrdi(3), decrdi(3), subdi(3)

 DIAGNOSTICS

 -1-

313

 Addset (3) 13-Nov-78 Addset (3)

 NAME
 Addset - put c in array(j) if it fits, increment j

 SYNOPSIS
 stat = addset(c, array, j, maxsize)

 character c, array(ARB)
 integer j # j is incremented
 integer maxsize
 integer stat returned as YES/NO

 DESCRIPTION
 Adds a character at a time to a specified position of an array
 and increments the index. It also checks that there’s enough
 room to do so.

 The array is an ascii character array stored one character per
 word. ’c’ is a single ascii character.

 YES is returned if the routine succeeded, otherwise NO.

 SEE ALSO
 scopy(3), stcopy(3), concat(3)

 DIAGNOSTICS
 None

 -1-

314

 Addstr (3) 17-Sep-81 Addstr (3)

 NAME
 Addstr - add string s to str(j) if it fits, increment j

 SYNOPSIS
 stat = addstr(s, str, j, maxsize)

 character s(ARB), str(ARB)
 integer j # j is incremented
 integer maxsize
 integer stat returned as YES/NO

 DESCRIPTION
 Copies the string ’s’ to array ’str’, starting in location
 ’j’. ‘j’ is incremented to point to the next free position in
 ’str’.

 If the addition of ‘s’ to ‘str’ will exceed its maximum length
 (maxsize), no copying is done and the status NO is returned.

 Both ‘s’ and ‘str’ are ascii character arrays stored one
 character per array element.

 YES is returned if the routine succeeded, otherwise NO.

 SEE ALSO
 scopy(3), stcopy(3), addset(3), concat(3)

 DIAGNOSTICS
 None

 -1-

315

 Adrfil (3) 15-Mar-82 Adrfil (3)

 NAME
 Adrfil - get name of user-information database file

 SYNOPSIS
 subroutine adrfil(file)

 character file(FILENAMESIZE)

 DESCRIPTION
 ‘adrfil’ returns the local file specification for the
 user-information database file, known as "˜msg/address".

 SEE ALSO
 mailid(2), homdir(2)

 DIAGNOSTICS
 none

 -1-

316

 Agetch (3) 14-Mar-82 Agetch (3)

 NAME
 Agetch - get next character from an archive module

 SYNOPSIS
 character function agetch(c, fd, size)

 character c
 filedes fd
 integer size(2)

 DESCRIPTION
 ‘agetch’ fetches the next character from the archive module
 opened on ‘fd’ and returns it in the variable ‘c’ and as the
 value of the function. The ‘size’ argument is that returned by
 an ‘aopen’ or ‘agethd’ call, and is decremented by ‘agetch’ to
 reflect the decrease in size of the remainder of the module.
 If the end of the module is detected, or a true end of file is
 detected on ‘fd’, the value EOF is returned.

 SEE ALSO
 agethd(3), agtlin(3), aopen(3), askip(3)

 DIAGNOSTICS
 Returns EOF if end of module is detected.

 -1-

317

 Agethd (3) 14-Mar-82 Agethd (3)

 NAME
 Agethd - get next archive header from file

 SYNOPSIS
 integer function agethd(fd, buf, size, fsize)

 filedes fd
 character buf(MAXLINE)
 integer size(2), fsize(2)

 DESCRIPTION
 ‘agethd’ reads the next line from the archive module
 represented by the file descriptor ‘fd’ and the size ‘fsize’.
 If the line is of the form of an archive header, the name of
 the module is placed in ‘buf’, and the size of the module is
 placed in ‘size’, with ‘fsize’ decremented to represent the
 decrease in size of the containing module. The value OK is
 returned if successful. If an end of module is detected, the
 value EOF is returned, and if the line read is not of the
 proper format, a value of ERR is returned.

 SEE ALSO
 agetch(3), agtlin(3), aopen(3), askip(3)

 DIAGNOSTICS
 Returns EOF on end of module and ERR if improper archive
 format.

 -1-

318

 Agtlin (3) 14-Mar-82 Agtlin (3)

 NAME
 Agtlin - get next line from an archive module

 SYNOPSIS
 integer function agtlin(buf, fd, size)

 character buf(MAXLINE)
 filedes fd
 integer size(2)

 DESCRIPTION
 ‘agtlin’ fetches the next line of input from the archive module
 represented by the arguments ‘fd’ and ‘size’. If another line
 is found, it is placed in ‘buf’, ‘size’ is decremented by the
 number of characters in the line, and this number is returned
 as the value of the function. If an end of module is detected,
 a value of EOF is returned.

 SEE ALSO
 agetch(3), agethd(3), aopen(3), askip(3)

 DIAGNOSTICS
 Returns EOF if end of module is detected.

 -1-

319

 Alldig (3) 15-Mar-82 Alldig (3)

 NAME
 Alldig - determine if string is all digits

 SYNOPSIS
 integer function alldig(str)

 character str(ARB)

 DESCRIPTION
 ‘alldig’ determines if the given string is all digits. If this
 is true, the value YES is returned, otherwise, NO.

 SEE ALSO
 type(3)

 DIAGNOSTICS
 A value of NO is returned if not all digits.

 -1-

320

 Amatch (3) 23-Jul-80 Amatch (3)

 NAME
 Amatch - look for pattern matching regular expression

 SYNOPSIS
 integer function amatch(line, from, pat, tagbeg, tagend)

 character line(ARB)
 integer from, pat(MAXPAT)
 integer tagbeg(10), tagend(10)
 (element "i+1" returns start or end, respectively,
 of "i"th tagged sub-pattern)

 DESCRIPTION
 Amatch scans ’line’ starting at location ’from’, looking for a
 pattern which matches the regular expression coded in ’pat’.
 If the pattern is found, the next available location in ‘line’
 is returned. If the pattern is not found, amatch returns 0.

 The regular expression in ’pat’ must have been previously
 encoded by ’getpat’ or ’makpat’. (For a complete description
 of regular expressions, see the writeup on the editor.)

 Amatch is a special-purpose version of match, which should be
 used in most cases.

 SEE ALSO
 match(3), getpat(3), makpat(3), ed(1)

 DIAGNOSTICS
 A value of 0 is returned if the pattern does not match.

 -1-

321

 Aopen (3) 14-Mar-82 Aopen (3)

 NAME
 Aopen - open archive module for reading

 SYNOPSIS
 filedes function aopen(name, fd, size)

 character name(FILENAMESIZE)
 filedes fd
 integer size(2)

 DESCRIPTION
 ‘aopen’ opens the archive module specified in ‘name’ for
 reading with subsequent calls to ‘agetch’ and ‘agtlin’. If the
 open is successful, the resulting file descriptor is placed in
 ‘fd’, as well as returned as the function value; the size of
 the module is placed in the variable ‘size’. Failure is
 signalled by returning a value of ERR.

 The format of the name specification is quite straight-forward;
 the syntax is:

 filename[‘module]...

 If no module names are specified, ‘aopen’ is equivalent to an
 ‘open’ call at READ access, and an "infinite" module size is
 placed in ‘size’.

 EXAMPLES
 character c
 character agetch
 integer size(2)
 filedes fd
 filedes aopen

 string name "rlib.w‘lib.r‘arsubs.r‘aopen"

 if (aopen(name, fd, size) == ERR)
 call cant(name)
 while (agetch(c, fd, size) != EOF)
 call putch(c, STDOUT)
 call close(fd)

 SEE ALSO
 agetch(3), agethd(3), agtlin(3), askip(3)

 DIAGNOSTICS
 Returns ERR if the specified archive module cannot be opened.

 -1-

322

 Argtab (3) 15-Mar-82 Argtab (3)

 NAME
 Argtab - fetch tab information from command line

 SYNOPSIS
 subroutine argtab(buf)

 character buf(MAXLINE)

 DESCRIPTION
 ‘argtab’ reads the command line arguments, using ‘getarg’, and
 copies those arguments which ‘detab’ and ‘entab’ understand
 into ‘buf’, separated by blank characters. This is in
 preparation for calling ‘settab’ to set the TAB stops.

 SEE ALSO
 settab(3), detab(1), entab(1), getarg(2)

 DIAGNOSTICS
 none

 -1-

323

 Askip (3) 14-Mar-82 Askip (3)

 NAME
 Askip - skip rest of archive module contents

 SYNOPSIS
 subroutine askip(fd, size, fsize)

 filedes fd
 integer size(2), fsize(2)

 DESCRIPTION
 ‘askip’ skips the number of characters indicated by ‘size’ in
 the archive module specified by ‘fd’ and ‘fsize’. ‘fsize’ is
 decreased by the number of characters skipped. This routine is
 handy when using ‘aopen’ to open a nested archive, and then
 scanning the archive modules at that level for the ones of
 interest.

 EXAMPLES
 character buf(MAXLINE)
 integer size(2), fsize(2)
 integer agethd
 filedes fd
 filedes aopen

 string name "rlib.w‘lib.r"
 string line "The modules contained in rlib.w‘lib.r are:@n"

 if (aopen(name, fd, fsize) == ERR)
 call cant(name)
 call putlin(line, STDOUT)
 while (agethd(fd, buf, size, fsize) == OK)
 {
 call putlin(buf, STDOUT)
 call putch(’@n’, STDOUT)
 call askip(fd, size, fsize)
 }
 call close(fd)

 SEE ALSO
 agetch(3), agethd(3), agtlin(3), aopen(3)

 DIAGNOSTICS

 -1-

324

 Badarg (3) 15-Mar-82 Badarg (3)

 NAME
 Badarg - output "invalid argument" message

 SYNOPSIS
 subroutine badarg(arg)

 character arg(ARB)

 DESCRIPTION
 ‘badarg’ displays the following message on Error Output:

 ? Ignoring invalid argument ‘<arg>’

 where <arg> is replaced by the contents of ‘arg’.

 SEE ALSO
 getarg(2)

 DIAGNOSTICS
 none

 -1-

325

 Bubble (3) 15-Mar-82 Bubble (3)

 NAME
 Bubble - bubble sort integers

 SYNOPSIS
 subroutine bubble(v, n)

 integer n, v(n)

 DESCRIPTION
 ‘bubble’ performs a bubble sort on the integers v(1) ... v(n).
 As is well known, the bubble sort algorithm should only be used
 for very small arrays. If larger arrays need to be sorted, see
 the entry on ‘shell’.

 SEE ALSO
 shell(3)

 DIAGNOSTICS
 none

 -1-

326

 Cant (3) 13-Nov-78 Cant (3)

 NAME
 Cant - print "Can’t open" message and terminate execution

 SYNOPSIS
 call cant(name)

 character name(ARB)

 DESCRIPTION
 Prints an error message (on ERROUT) indicating file "name"
 could not be opened. All open files are closed and execution
 is terminated. Name is an ascii character array terminated
 with an EOS marker.

 SEE ALSO
 error(3), remark(2)

 DIAGNOSTICS
 None

 -1-

327

 Catsub (3) 15-Mar-82 Catsub (3)

 NAME
 Catsub - add replacement text to new buffer

 SYNOPSIS
 subroutine catsub(lin, from, to, sub, new, k, maxnew)

 integer from, to, k, maxnew
 character lin(MAXLINE), new(maxnew), sub(ARB)

 DESCRIPTION
 The string represented by lin(from) ... lin(to-1) is replaced
 according to the instructions in ‘sub’(which has been generated
 via a call to ‘getsub’ or ‘maksub’); the replacement text is
 appended to ‘new’ starting at position ‘k’. ‘k’ is incremented
 as the substitutions are added, and points to the EOS location
 ‘new’ upon return. ‘maxnew’ represents the maximum size of
 ‘new’. If an illegal tagged pattern (section) has been
 specified in ‘sub’, the error message
 ? In CatSub: illegal section.
 is displayed to the user on Error Output.

 SEE ALSO
 getpat(3), makpat(3), amatch(3), getsub(3), maksub(3)

 DIAGNOSTICS
 If an illegal section is specified, a comment to that effect is
 displayed on Error Output.

 -1-

328

 Chcopy (3) 15-Mar-82 Chcopy (3)

 NAME
 Chcopy - copy character into buffer, increment pointer, EOS
 terminate

 SYNOPSIS
 subroutine chcopy(c, buf, i)

 character c, buf(ARB)
 integer i

 DESCRIPTION
 ‘chcopy’ copies ‘c’ into ‘buf(i)’, increments ‘i’, and places
 an EOS after ‘c’ in ‘buf’. This routine assumes that there is
 enough room in ‘buf’ for BOTH the character and the EOS.

 SEE ALSO
 addset(3), stcopy(3), scopy(3)

 DIAGNOSTICS
 none

 -1-

329

 Clower (3) 13-Nov-78 Clower (3)

 NAME
 Clower - fold c to lower case

 SYNOPSIS
 c = clower(c)

 character c

 DESCRIPTION
 Fold character c to lower case, if not already there. If c is
 not alphabetic, returns it unchanged.

 SEE ALSO
 fold(3), upper(3), clower(3)

 DIAGNOSTICS
 None

 -1-

330

 Concat (3) 23-Jul-80 Concat (3)

 NAME
 Concat - concatenate 2 strings together

 SYNOPSIS
 call concat(buf1, buf2, outstr)

 character buf1(ARB), buf2(ARB), outstr(ARB)

 DESCRIPTION
 Copies the arrays buf1 and buf2 into the array outstr.

 All arrays are ascii character arrays stored one character per
 array element.

 It is perfectly legal for ‘buf1’ and ‘outstr’ to be the same
 arrays, which results in ‘buf2’ being appended to ‘buf1’.

 SEE ALSO
 scopy(3), stcopy(3), addset(3)

 DIAGNOSTICS
 None

 -1-

331

 Ctoc (3) 23-Mar-80 Ctoc (3)

 NAME
 Ctoc - copy string-to-string, observing length limits

 SYNOPSIS
 integer function ctoc (from, to, len)
 integer len
 character from (ARB), to (len)

 DESCRIPTION
 ’Ctoc’ copies an EOS-terminated unpacked string from one array
 to another, observing a maximum-length constraint on the
 destination array. The function return is the number of
 characters copied (i.e., the length of the string in the
 parameter ’to’).

 Note that the other string copy routine, ’scopy’, is not
 protected; if the length of the source string exceeds the space
 available in the destination string, some portion of memory
 will be garbled.

 IMPLEMENTATION
 A simple loop copies characters from ’from’ to ’to’ until an
 EOS is encountered or all the space available in the
 destination array is used up.

 ARGUMENTS MODIFIED
 to

 SEE ALSO
 scopy(3), ctoi(3)

 -1-

332

 Ctodi (3) 15-Mar-82 Ctodi (3)

 NAME
 Ctodi - convert character string to double integer array

 SYNOPSIS
 subroutine ctodi(buf, i, di)

 character buf(ARB)
 integer i, di(2)

 DESCRIPTION
 ‘ctodi’ converts the numeric string starting at ‘buf(i)’ into a
 double integer array, as described in ‘initdi’. The index ‘i’
 is left at the next character after the converted numeric
 string.

 SEE ALSO
 ditoc(3), initdi(3), incrdi(3), decrdi(3), adddi(3), subdi(3)

 DIAGNOSTICS
 none

 -1-

333

 Ctoi (3) 13-Nov-78 Ctoi (3)

 NAME
 Ctoi - convert string at in(i) to integer, increment i

 SYNOPSIS
 n = ctoi(in, i)

 character in(ARB)
 integer i # i is incremented
 integer n is returned as the converted integer

 DESCRIPTION
 Ctoi converts the character string at "in(i)" into an integer.
 A leading minus sign (’-’) is allowed. Leading blanks and tabs
 are ignored; any subsequent digits are converted to the correct
 numeric value. The first non-digit seen terminates the scan;
 upon return, "i" points to this position. "n" is returned as
 the value of the integer.

 The "in" array is an ascii character array terminated with an
 EOS marker (or a non-numeric character).

 Zero is returned if no digits are found.

 SEE ALSO
 itoc(3)

 DIAGNOSTICS
 There are no checks for machine overflow.

 -1-

334

 Cupper (3) 13-Nov-78 Cupper (3)

 NAME
 Cupper - convert character to upper case

 SYNOPSIS
 c = cupper(c)

 character c

 DESCRIPTION
 CUPPER converts ascii character c to upper case, if not already
 there. Non-alphabetic characters are returned unchanged.

 SEE ALSO
 upper(3), clower(3), fold(3)

 DIAGNOSTICS
 None

 -1-

335

 Decrdi (3) 15-Mar-82 Decrdi (3)

 NAME
 Decrdi - decrement double integer array

 SYNOPSIS
 decrdi(dblint)

 integer dblint(2)

 expands into:

 {
 dblint(2) = dblint(2) - 1
 if (dblint(2) < 0)
 {
 dblint(1) = dblint(1) - 1
 dblint(2) = 9999
 }
 }

 DESCRIPTION
 Invocation of this macro causes the double integer argument to
 be decremented by one, with an appropriate carry occurring, if
 necessary. See the entry for ‘initdi’ for more information on
 the double integer construct.

 SEE ALSO
 initdi(3), incrdi(3), adddi(3), subdi(3)

 DIAGNOSTICS

 -1-

336

 Delete (3) 23-Mar-80 Delete (3)

 NAME
 Delete - remove a symbol from a symbol table

 SYNOPSIS
 subroutine delete (symbol, table)
 character symbol (ARB)
 pointer table

 DESCRIPTION
 ’Delete’ removes the character-string symbol given as its first
 argument from the symbol table given as its second argument.
 All information associated with the symbol is lost.

 The symbol table specified must have been generated by the
 routine ’mktabl’.

 If the given symbol is not present in the symbol table,
 ’delete’ does nothing; this condition is not considered an
 error.

 IMPLEMENTATION
 ’Delete’ calls ’stlu’ to determine the location of the given
 symbol in the symbol table. If present, it is unlinked from
 its hash chain. The dynamic storage space allocated to the
 symbol’s node is returned to the system by a call to ’dsfree’.

 CALLS
 stlu, dsfree

 SEE ALSO
 enter(3), lookup(3), mktabl(3), rmtabl(3), stlu(3), dsget(3),
 dsfree(3), dsinit(3), sctabl(3)

 -1-

337

 Disize (3) 15-Mar-82 Disize (3)

 NAME
 Disize - determine size of file as double integer array

 SYNOPSIS
 integer function disize(file, di)

 character file(FILENAMESIZE)
 integer di(2)

 DESCRIPTION
 ‘disize’ opens ‘file’, counts the number of characters as a
 double integer, closes the file, and returns the value OK. If
 the file could not be opened, a value of ERR is returned.
 Consult the entry for ‘initdi’ for more information on double
 integers.

 SEE ALSO
 fsize(3), initdi(3)

 DIAGNOSTICS
 A value of ERR is returned if the file could not be opened.

 -1-

338

 Ditoc (3) 15-Mar-82 Ditoc (3)

 NAME
 Ditoc - convert a double integer array to a character string

 SYNOPSIS
 integer function ditoc(di, buf, size)

 integer di(2), size
 character buf(size)

 DESCRIPTION
 ‘ditoc’ converts the double integer in ‘di’ into a character
 string in buf. The length of the generated string is returned
 as the value of the function. The entry on ‘initdi’ can be
 consulted for more information on double integers.

 SEE ALSO
 ctodi(3), itoc(3), initdi(3), incrdi(3), decrdi(3), adddi(3),
 subdi(3)

 DIAGNOSTICS
 none

 -1-

339

 Dopack (3) 14-Mar-82 Dopack (3)

 NAME
 Dopack - pack words at TAB stops and flush line, if required

 SYNOPSIS
 subroutine dopack(word, nxtcol, rightm, buf, fd)

 filedes fd
 integer nxtcol, rightm
 character word(ARB), buf(MAXLINE)

 DESCRIPTION
 ‘dopack’ packs ‘word’ into ‘buf’, aligning word at the next
 available tab stop, which are taken to be every 16 characters.
 If ‘buf’ cannot be added to without exceeding ‘rightm’, ‘buf’
 will be flushed to ‘fd’ and ‘word’ packed into ‘buf’ starting
 in column 1. At least one word is packed into ‘buf’,
 regardless of length, to assure that some progress is made in
 outputting the data.

 SEE ALSO
 inpack(3), flpack(3)

 DIAGNOSTICS
 none

 -1-

340

 Dsdecl (3) 15-Mar-82 Dsdecl (3)

 NAME
 Dsdecl - declare storage for Dynamic Memory routines

 SYNOPSIS
 DS_DECL(Mem,MEM_SIZE)

 expands into:

 integer Mem(MEM_SIZE)
 character cMem(arith(MEM_SIZE,*,CHAR_PER_INT))
 equivalence (Mem(1),cMem(1))

 common / cdsmem / Mem

 DESCRIPTION
 This macro invocation must appear in the program units which
 invoke any of the following routines: dsinit, iminit, tbinit.
 This macro causes the common block which is used by the dynamic
 storage routines to be generated into the program with a size
 determined by the constant MEM_SIZE. The same value of
 MEM_SIZE must be used in the calls to dsinit, iminit and tbinit
 as is used in the DS_DECL declaration.

 The user must have defined MEM_SIZE prior to the invocation of
 DS_DECL, usually via a statement of the form

 define(MEM_SIZE,4000)

 for example.

 SEE ALSO
 dsinit(3), iminit(3), tbinit(3)

 DIAGNOSTICS

 -1-

341

 Dsfree (3) 23-Mar-80 Dsfree (3)

 NAME
 Dsfree - free a block of dynamic storage

 SYNOPSIS
 subroutine dsfree (block)
 pointer block

 DESCRIPTION
 ’Dsfree’ returns a block of storage allocated by ’dsget’ to the
 available space list. The argument must be a pointer returned
 by ’dsget’.

 See the remarks under ’dsget’ for required initialization
 measures.

 IMPLEMENTATION
 ’Dsfree’ is an implementation of Algorithm B on page 440 of
 Volume 1 of The Art of Computer Programming, by Donald E.
 Knuth. The reader is referred to that source for detailed
 information.

 ’Dsfree’ and ’dsget’ maintain a list of free storage blocks,
 ordered by address. ’Dsfree’ searches the list to find the
 proper location for the block being returned, and inserts the
 block into the list at that location. If blocks on either side
 of the newly-returned block are available, they are coalesced
 with the new block. If the block address does not correspond
 to the address of any allocated block, ’dsfree’ remarks
 "attempt to free unallocated block" and returns to the user.

 BUGS/DEFICIENCIES
 The algorithm itself is not the best.

 SEE ALSO
 dsget(3), dsinit(3)

 -1-

342

 Dsget (3) 23-Mar-80 Dsget (3)

 NAME
 Dsget - obtain a block of dynamic storage

 SYNOPSIS
 pointer function dsget (w)
 integer w

 DESCRIPTION
 ’Dsget’ searches its available memory list for a block that is
 at least as large as its first argument. If such a block is
 found, its index in the memory list is returned; otherwise, the
 constant LAMBDA is returned.

 In order to use ’dsget’, the following declaration must be
 present:
 DS_DECL (mem, MEMSIZE)
 where MEMSIZE is supplied by the user, and may take on any
 positive value between 6 and 32767, inclusive. Furthermore,
 memory must have been initialized with a call to ’dsinit’:
 call dsinit (MEMSIZE)

 IMPLEMENTATION
 ’Dsget’ is an implementation of Algorithm A’ on pages 437-438
 of Volume 1 of The Art of Computer Programming, by Donald E.
 Knuth. The reader is referred to that source for detailed
 information.

 ’Dsget’ searches a linear list of available blocks for one of
 sufficient size. If none are available, a value of LAMBDA is
 returned; otherwise, the block found is broken into two pieces,
 and the index (in array ’mem’) of the piece of the desired size
 is returned to the user. The remaining piece is left on the
 available space list. Should this procedure cause a block to
 be left on the available space list that is smaller than a
 threshhold size, the few extra words are awarded to the user
 and the block is removed entirely, thus speeding up the next
 search for space.

 BUGS/DEFICIENCIES
 It is somewhat annoying for the user to have to declare the
 storage area, but Fortran prevents effective use of pointers,
 so this inconvenience is necessary for now.

 SEE ALSO
 dsfree(3), dsinit(3), dsdecl(3)

 -1-

343

 Dsinit (3) 23-Mar-80 Dsinit (3)

 NAME
 Dsinit - initialize dynamic storage space

 SYNOPSIS
 subroutine dsinit (w)
 integer w

 DESCRIPTION
 ’Dsinit’ initializes an area of storage in the common block
 CDSMEM so that the routines ’dsget’ and ’dsfree’ can be used
 for dynamic storage allocation. The memory to be managed must
 be supplied by the user, by a declaration of the form:
 DS_DECL (mem, MEMSIZE)
 The memory size must be passed to ’dsinit’ as its argument:
 call dsinit (MEMSIZE)

 IMPLEMENTATION
 ’Dsinit’ sets up an available space list consisting of two
 blocks, the first empty and the second containing all remaining
 memory. The first word of memory (below the available space
 list) is set to the total size of memory; this information is
 used only by the dump routines ’dsdump’ and ’dsdbiu’.

 CALLS
 error

 SEE ALSO
 dsget(3), dsfree(3), dsdecl(3)

 -1-

344

 Dstime (3) 2-Apr-82 Dstime (3)

 NAME
 Dstime - determine if the date is daylight savings time

 SYNOPSIS
 integer function dstime(date)

 integer date(7)

 DESCRIPTION
 ‘Dstime’ determines whether the given date (in the format as
 returned by a ‘getnow’ call) corresponds to daylight savings
 time. If this is true, a value of YES is returned, otherwise,
 NO.

 IMPLEMENTATION
 If the month specified is > 4 (April) and < 10 (October), then
 YES. If the month specified is < 4 or > 10, then NO. If the
 month = 4, and the day is < the last Sunday, then NO,
 otherwise, YES. If the month = 10, and the day is < the last
 Sunday, then YES, otherwise, NO.

 CALLS
 wkday(3)

 SEE ALSO
 getnow(2), wkday(3)

 -1-

345

 Entdef (3) 14-Mar-82 Entdef (3)

 NAME
 Entdef - enter a new symbol definition, discarding any old one

 SYNOPSIS
 subroutine entdef(name, defn, table)

 character name(ARB), defn(ARB)
 pointer table

 DESCRIPTION
 ‘entdef’ enters a (name,defn) pair into the symbol table
 ‘table’. If any old definitions for ‘name’ exist, they are
 purged. ‘table’ must have been obtained by a call to
 ‘mktabl’. If the (name,defn) pair cannot be stored in the
 table, the error message

 in entdef: no room for new definition.

 is displayed on error output.

 SEE ALSO
 mktabl(3), ludef(3)

 DIAGNOSTICS
 If the symbol definition cannot be entered, an error message is
 displayed to the user.

 -1-

346

 Enter (3) 23-Mar-80 Enter (3)

 NAME
 Enter - place symbol in symbol table

 SYNOPSIS
 integer function enter (symbol, info, table)
 character symbol (ARB)
 integer info (ARB)
 pointer table

 DESCRIPTION
 ’Enter’ places the character-string symbol given as its first
 argument, along with the information given in its second
 argument, into the symbol table given as its third argument.
 If the symbol is successfully entered in the table, the value
 of OK is returned; otherwise, the value ERR is returned.

 The symbol table used must have been created by the routine
 ’mktabl’. The size of the info array must be at least as large
 as the symbol table node size, determined at table creation
 time.

 Should the given symbol already be present in the symbol table,
 its information field will simply be overwritten with the new
 information.

 ’Enter’ uses the dynamic storage management routines, which
 require initialization by the user; see ’dsinit’ for further
 details.

 IMPLEMENTATION
 ’Enter’ calls ’stlu’ to find the proper location for the
 symbol. If the symbol is not present in the table, a call to
 ’dsget’ fetches a block of memory of sufficient size, which is
 then linked onto the proper chain from the hash table. Once
 the location of the node for the given symbol is known, the
 contents of the information array are copied into the node’s
 information field.

 CALLS
 stlu, dsget

 SEE ALSO
 lookup(3), delete(3), mktabl(3), rmtabl(3), stlu(3), dsget(3),
 dsfree(3), dsinit(3), sctabl(3)

 -1-

347

 Equal (3) 13-Nov-78 Equal (3)

 NAME
 Equal - compare str1 to str2; return YES if equal

 SYNOPSIS
 stat = equal(str1, str2)

 character str1(ARB), str2(ARB)
 integer stat is returned as YES/NO

 DESCRIPTION
 Compares two strings, returning YES if they are the same, NO if
 they differ. Each string is an ascii character array
 terminated with an EOS marker.

 SEE ALSO
 strcmp(3)

 DIAGNOSTICS
 None

 -2-

348

 Error (3) 23-Jul-80 Error (3)

 NAME
 Error - print single-line message and terminate execution

 SYNOPSIS
 call error (message)

 integer message #message is a hollerith array

 DESCRIPTION
 Error writes the message onto the standard error file ERROUT.
 A NEWLINE is always generated, even though one may not appear
 in the message. Endst is called and execution ceases.

 Error is essentially a call to ’remark’ and then to ’endst’.

 The message array is a Fortran hollerith string in the format
 generated by the Ratfor quoted string capability. On some
 systems, it may be necessary to terminate the string with a ’.’
 or other end-of-string marker.

 SEE ALSO
 remark(2), putlin(2), prompt(2), endst(2)

 DIAGNOSTICS
 None

 -1-

349

 Esc (3) 23-Jul-80 Esc (3)

 NAME
 Esc - map array(i) into escaped character, if appropriate

 SYNOPSIS
 character function esc(array, i)

 character array(ARB)
 integer i # i will be incremented

 DESCRIPTION
 This function checks array(i) for the existence of an escape
 character (as defined by ESCAPE in the general symbol
 definitions). If an escape is found and is appropriate,
 array(i+1) is returned as the escaped character. If no escape
 is found, the character ‘array(i)’ is returned.

 Those characters which have special meaning are:

 b backspace (BS) ^H
 f formfeed (FF) ^L
 l linefeed (LF) ^J
 n newline (LF) ^J
 r return (CR) ^M
 t tab (HT) ^I

 In addition, specifying ’@ddd’, where ’0’ <= d <= ’7’, results in the
 encoding of a character with that octal representation. Therefore, a
 ^Z character (SUB or 8%026) could be specified as ’@026’.

 If the character after the escape is not one of the above or a string of
 digits, then that character is returned, unchanged.

 SEE ALSO
 index(3), type(3)

 DIAGNOSTICS
 None

 -1-

350

 Exppth (3) 15-Mar-82 Exppth (3)

 NAME
 Exppth - generate pointers to the path fields in a filename

 SYNOPSIS
 subroutine exppth(path, depth, ptr, buf)

 character path(FILENAMESIZE), buf(FILENAMESIZE)
 integer depth, ptr(MAXDIRECTS)

 DESCRIPTION
 Given a filename in path format in the array ‘path’, ‘exppth’
 scans the pathname, filling in pointers to each path field in
 ‘ptr’, and returns the number of path fields found in ‘depth’.

 EXAMPLES
 integer depth, ptr(MAXDIRECTS)
 character scr(FILENAMESIZE)

 string path "˜bin/symbols"

 call exppth(path, depth, ptr, scr)

 Upon return from exppth, ptr(1) is 1, ptr(2) is 5, and depth is
 2. The calling program can now access the individual path
 fields via invocations of the following form:

 i = ptr(2)
 junk = gtftok(path, i, scr)

 The second path field ("symbols") is now in ‘scr’, awaiting
 further processing.

 SEE ALSO
 gtftok(3)

 DIAGNOSTICS
 none

 -1-

351

 Fcopy (3) 13-Nov-78 Fcopy (3)

 NAME
 Fcopy - copy file in to file out

 SYNOPSIS
 call fcopy (in, out)

 integer in, out

 DESCRIPTION
 Assuming that both files are opened, positioned, and ready to
 go, the routine copies lines from the current file position
 until an EOF is reached on file ’in’. ’in’ and ’out’ are file
 identifiers returned by open or create.

 IMPLEMENTATION
 ’Fcopy’ simply makes repeated calls to getlin and putlin.

 SEE ALSO
 open(2), create(2), getlin(2), putlin(2)

 DIAGNOSTICS
 None

 -1-

352

 Flpack (3) 14-Mar-82 Flpack (3)

 NAME
 Flpack - flush any packed words

 SYNOPSIS
 subroutine flpack(nxtcol, rightm, buf, fd)

 filedes fd
 integer nxtcol, rightm
 character buf(MAXLINE)

 DESCRIPTION
 ‘flpack’ writes ‘buf’ to ‘fd’ if there is any data packed into
 ‘buf’, and resets nxtcol to 1.

 SEE ALSO
 inpack(3), dopack(3)

 DIAGNOSTICS
 none

 -1-

353

 Fmtdat (3) 25-Sep-80 Fmtdat (3)

 NAME
 Fmtdat - convert date information to character string

 SYNOPSIS
 subroutine fmtdat (date, time, now, form)
 character date (10), time (9)
 integer now (7), form

 DESCRIPTION
 ’Fmtdat’ is used to convert date information (such as that
 provided by ’getnow’) into human-readable graphics. The first
 argument is a character string to receive the representation of
 the current date. The second argument is a character string to
 receive the representation of the current time. The third
 argument is a date specification in the same 7-word integer
 array format as is returned by ’getnow’ (year including
 century, month, day, hour, minute, second, millisecond). The
 fourth argument selects the format of the character
 representations; if form == LETTER, the date is formatted as
 dd-Mmm-yy; if form == DIGIT, ‘date’ is formatted as mm/dd/yy.
 ‘time’ is formatted as hh:mm:ss.

 IMPLEMENTATION
 Simple integer-to-character conversions.

 ARGUMENTS MODIFIED
 date, time

 SEE ALSO
 getnow(2), date(1)

 -1-

354

 Fold (3) 13-Nov-78 Fold (3)

 NAME
 Fold - convert string to lower case

 SYNOPSIS
 call fold (str)

 character str(ARB)

 DESCRIPTION
 Converts the array ’str’ to lower case characters.
 Non-alphabetic characters are left unchanged. The ’str’ array
 is ascii characters terminated by an EOS marker.

 SEE ALSO
 clower(3), cupper(3), upper(3)

 DIAGNOSTICS
 None

 -1-

355

 Fsize (3) 15-Mar-82 Fsize (3)

 NAME
 Fsize - determine size of file in characters

 SYNOPSIS
 integer function fsize(file)

 character file(FILENAMESIZE)

 DESCRIPTION
 ‘fsize’ opens the file, counts the number of characters using
 ‘getch’, and closes the file, returning the number of
 characters found as an integer. Caution must be exercised on
 16-bit machines, as any files containing more than 32767
 characters will not be accounted for correctly. It is probably
 better to use ‘disize’ as a rule, since the 16-bit limit will
 only affect files with more than 327,679,999 characters.

 SEE ALSO
 disize(3)

 DIAGNOSTICS
 Returns ERR if the file cannot be opened.

 -1-

356

 Fskip (3) 15-Mar-82 Fskip (3)

 NAME
 Fskip - skip n characters on open file

 SYNOPSIS
 subroutine fskip(fd, n)

 filedes fd
 integer n

 DESCRIPTION
 ‘n’ characters are skipped on the file open on unit ‘fd’.

 SEE ALSO
 acopy(3)

 DIAGNOSTICS
 If an EOF is encountered before the number of characters has
 been skipped, the routine simply returns.

 -1-

357

 Getc (3) 10-Nov-78 Getc (3)

 NAME
 Getc - read character from standard input

 SYNOPSIS
 c = getc (c)

 character c

 DESCRIPTION
 Getc reads the next character from the standard input. The
 character is returned in ascii format both as the functional
 return and in the parameter c. If the end of a line has been
 encountered, NEWLINE is returned. If the end of the file has
 been encountered, EOF is returned.

 If the input file is not ascii, characters are mapped into
 their corresponding ascii format.

 SEE ALSO
 getch(2), getlin(2)

 DIAGNOSTICS
 None

 -1-

358

 Getpat (3) 23-Jul-80 Getpat (3)

 NAME
 Getpat - prepare regular expression for pattern matching

 SYNOPSIS
 integer function getpat(arg, pat)

 character arg(ARB)
 integer pat(MAXPAT)

 DESCRIPTION
 Getpat is used to translate a regular expression into a format
 convenient for subsequent pattern matching via ’match’ or
 ’amatch’. (For a complete description of regular expressions,
 see the writeup on the editor.)

 A typical scenario for pattern-matching might be:

 stat = getpat(pattern_you_want_located, pattern_array)
 YES/NO = match(input_line, pattern_array)

 The pattern array should be dimensioned at least MAXPAT
 integers long, a definition available in the standard symbol
 definitions file.

 If the pattern can be made, the functions returns the number of
 integers in "pat"; otherwise it returns ERR.

 Getpat is essentially a call to makpat with the following
 parameters:

 getpat = makpat (arg, 1, EOS, pat)

 SEE ALSO
 makpat(3), match(3), amatch(3)

 DIAGNOSTICS
 A value of ERR is returned if a failure occurs in the
 encoding.

 -1-

359

 Getsub (3) 15-Mar-82 Getsub (3)

 NAME
 Getsub - generate substitution pattern

 SYNOPSIS
 integer function getsub(arg, sub)

 character arg(ARB), sub(MAXPAT)

 DESCRIPTION
 This routine is simply a special version of ‘maksub’, and is
 equivalent to

 getsub = maksub(arg, 1, EOS, sub)

 Consult the entry for ‘maksub’ for what these routines do.

 SEE ALSO
 maksub(3)

 DIAGNOSTICS
 If an error occurs in the encoding, a value of ERR is
 returned.

 -1-

360

 Getwrd (3) 13-Nov-78 Getwrd (3)

 NAME
 Getwrd - get non-blank word from in(i) into out, increment i

 SYNOPSIS
 size = getwrd(in, i, out)

 character in(ARB), out(ARB)
 integer i # i is incremented
 integer size is returned as the length of the word found

 DESCRIPTION
 Starting at position ’i’ in array ’in’, skips any leading
 blanks and tabs and returns the next word and its length. A
 word is any series of characters terminated by a BLANK, TAB, or
 NEWLINE. The terminator is not returned as part of the word.
 ’i’ is incremented to the position just past the end of the
 word. The word is returned in array ’out’.

 Both ’in’ and ’out’ are ascii character arrays terminated with
 an EOS marker.

 SEE ALSO
 skipbl(3)

 DIAGNOSTICS
 None

 -1-

361

 Gitocf (3) 15-Mar-82 Gitocf (3)

 NAME
 Gitocf - general integer to character conversion with fill
 characters

 SYNOPSIS
 integer function gitocf(int, str, size, base, width, fc)

 integer int, size, base, width
 character str(size), fc

 DESCRIPTION
 ‘gitocf’ does general formatting of integers to characters in
 any base and will right justify the number in a field of a
 given width, padding with the specified fill character. If the
 base specified is less than 2 or greater than 36, a base of 10
 is used. If the resulting string would overflow the size of
 str, only the rightmost ‘size-1’ characters are returned. The
 number of characters in the string is returned as the value of
 the function. If ‘width’ is specified as 0, then no padding is
 performed.

 SEE ALSO
 itoc(3)

 DIAGNOSTICS
 none

 -1-

362

 Gtftok (3) 15-Mar-82 Gtftok (3)

 NAME
 Gtftok - fetch next path token into buffer, incrementing
 pointer

 SYNOPSIS
 integer function gtftok(buf, i, token)

 character buf(ARB), token(FILENAMESIZE)
 integer i

 DESCRIPTION
 ‘gtftok’ fetches the next path token starting at ‘buf(i)’ into
 the array ‘token’, incrementing the pointer ‘i’ to the
 character which terminated the scan. The length of the token
 is returned as the function value. Characters which can
 terminate the scan are ’/’, ’\’ and EOS. Upon entry, if
 ‘buf(i)’ == ’/’, it is skipped.

 SEE ALSO
 exppth(3)

 DIAGNOSTICS
 none

 -1-

363

 Gtword (3) 15-Mar-82 Gtword (3)

 NAME
 Gtword - get next word, subject to size limitations

 SYNOPSIS
 integer function gtword(in, i, out, size)

 integer i, size
 character in(ARB), out(size)

 DESCRIPTION
 ‘gtword’ is similar to ‘getwrd’, except that it will only copy
 ‘size-1’ characters into ‘out’. If the next word of input is
 too big for the buffer, the extra characters are skipped over,
 leaving ‘i’ pointing at the character which terminated the
 entire word, not just the portion returned in ‘out’. The
 length of the word returned in ‘out’ is returned as the value
 of the function.

 SEE ALSO
 getwrd(3)

 DIAGNOSTICS
 none

 -1-

364

 Imget (3) 23-Mar-80 Imget (3)

 NAME
 Imget - fetch next token from in-memory sort area

 SYNOPSIS
 integer function imget(table, buf)

 pointer table
 character buf(ARB)

 DESCRIPTION
 ‘imget’ fetches the next token from the in-memory sort area
 pointed to by ‘table’, which was returned as the function value
 if an ‘iminit’ call. If there is another token which has not
 been fetched yet, it is returned in ‘buf’ and a value of OK is
 returned as the value of the function; otherwise, the value EOF
 is returned.

 SEE ALSO
 iminit(3), imput(3), imsort(3)

 DIAGNOSTICS
 The value EOF is returned if there are no more tokens to
 fetch.

 -1-

365

 Iminit (3) 23-Mar-80 Iminit (3)

 NAME
 Iminit - initialize in-memory sort area

 SYNOPSIS
 pointer function iminit(memsiz, avetok)

 integer memsiz, avetok

 DESCRIPTION
 ‘iminit’ initializes the dynamic storage region (via a ‘dsinit’
 call) and allocates a block of pointers for future use by
 ‘imget’, ‘imput’ and ‘imsort’. The pointer to this block of
 pointers is returned as the value of the function. The program
 calling ‘iminit’ must have made the following declaration
 DS_DECL(Mem,memsiz)
 to cause the memory area used by the dynamic storage routines
 to be allocated. ‘avetok’ is an estimate of the average length
 of the tokens which will be inserted into the dynamic memory
 via ‘imput’ calls.

 SEE ALSO
 dsinit(3), imput(3), imget(3), imsort(3)

 DIAGNOSTICS
 The value LAMBDA is returned if the dynamic storage area is too
 small.

 -1-

366

 Impath (3) 15-Mar-82 Impath (3)

 NAME
 Impath - generate search path for known files

 SYNOPSIS
 subroutine impath(path)

 character path(arith(FILENAMESIZE,*,3))

 DESCRIPTION
 ‘impath’ returns a search path for use in ‘loccom’ when
 searching for known files. The search path returned depends
 upon whether your system has a tree-structured file system or
 not. If not, the path returned corresponds to:

 "@e˜/@e˜usr/@e˜bin/@e@n"

 while tree-structured systems return:

 "@e˜/tools/@e˜usr/@e˜bin/@e@n"

 Consult the entry for ‘loccom’ for more information on the
 structure of the search path.

 EXAMPLES
 The program wishes to spawn the editor for the user. The following code
 fragment will do the trick, searching for the editor through the standard
 search path as used by the shell:

 character image(FILENAMESIZE), pid(PIDSIZE)
 character path(arith(FILENAMESIZE,*,3))
 integer loccom, spawn

 string edst "ed"
 string args "ed temp.fil"
 string suffix IMAGE_SUFFIX

 call impath(path)
 if (loccom(ed, path, suffix, image) != BINARY)
 call error("? Cannot locate editor image file.")
 if (spawn(image, args, pid, WAIT) == ERR)
 call error("? Error spawning editor.")

 SEE ALSO
 loccom(2)

 DIAGNOSTICS
 none

 -1-

367

 Imput (3) 23-Mar-80 Imput (3)

 NAME
 Imput - place token into in-memory sort area

 SYNOPSIS
 integer function imput(table, buf)

 pointer table
 character buf(ARB)

 DESCRIPTION
 ‘imput’ places the token passed in ‘buf’ into the in-memory
 sort area pointed to by ‘table’, which was returned as the
 function value of an ‘iminit’ call. If there is room for the
 token, a value of OK is returned as the function value;
 otherwise, a value of ERR is returned.

 SEE ALSO
 iminit(3), imget(3), imsort(3)

 DIAGNOSTICS
 If there is no room for the token, a value of ERR is returned.

 -1-

368

 Imrset (3) 14-Mar-82 Imrset (3)

 NAME
 Imrset - reset in-memory read pointer

 SYNOPSIS
 subroutine imrset(table)

 pointer table

 DESCRIPTION
 ‘imrset’ resets the in-memory read pointer, such that the next
 ‘imget’ call will start reading at the beginning of the
 in-memory sort area. ‘table’ must have been obtained by a call
 to ‘iminit’. This function is equivalent to rewinding an input
 file.

 SEE ALSO
 iminit(3), imget(3)

 DIAGNOSTICS
 none

 -1-

369

 Imsort (3) 23-Mar-80 Imsort (3)

 NAME
 Imsort - sort tokens in in-memory sort area

 SYNOPSIS
 subroutine imsort(table)

 pointer table

 DESCRIPTION
 ‘imsort’ sorts the string tokens stored in the in-memory sort
 area pointed to by ‘table’, which was returned as the function
 value of a previous ‘iminit’ call. The strings are sorted
 according to the ASCII collating sequence, with all characters
 being significant. Upon completion, the tokens may be fetched
 via ‘imget’ calls in sorted order.

 SEE ALSO
 iminit(3), imput(3), imget(3)

 DIAGNOSTICS

 -1-

370

 Imuniq (3) 14-Mar-82 Imuniq (3)

 NAME
 Imuniq - unique sorted in-memory array

 SYNOPSIS
 subroutine imuniq(table)

 pointer table

 DESCRIPTION
 ‘imuniq’ scans the in-memory array generated via ‘imput’ calls,
 and possible sorted by a call to ‘imsort’, eliminating adjacent
 duplicate lines. ‘table’ must have been obtained by a call to
 ‘iminit’. This is the same function as provided by the ‘uniq’
 utility for files.

 SEE ALSO
 iminit(3), imput(3), imsort(3), uniq(1)

 DIAGNOSTICS
 none

 -1-

371

 Incrdi (3) 15-Mar-82 Incrdi (3)

 NAME
 Incrdi - increment double integer array

 SYNOPSIS
 incrdi(dblint)

 integer dblint(2)

 expands into:

 {
 dblint(2) = dblint(2) + 1
 if (dblint(2) >= 10000)
 {
 dblint(1) = dblint(1) + 1
 dblint(2) = 0
 }
 }

 DESCRIPTION
 Invocation of this macro causes the double integer argument to
 be incremented by one, with the appropriate carry into the high
 integer, if necessary. See the entry for ‘initdi’ for more
 information on the double integer structure.

 SEE ALSO
 initdi(3), decrdi(3), adddi(3), subdi(3)

 DIAGNOSTICS

 -1-

372

 Index (3) 13-Nov-78 Index (3)

 NAME
 Index - find character c in string str

 SYNOPSIS
 loc = index(str, c)

 character str(ARB), c
 integer loc is returned as the location is str where c was located

 DESCRIPTION
 Returns the index of the first character in ’str’ that matches
 ’c’, or zero if ’c’ isn’t in the array. ’Str’ is an ascii
 character array terminated with an EOS marker. ’c’ is a single
 ascii character.

 SEE ALSO
 match(3), getpat(3), indexs(3)

 DIAGNOSTICS
 None

 -1-

373

 Indexs (3) 15-Mar-82 Indexs (3)

 NAME
 Indexs - return index of substring in character string

 SYNOPSIS
 integer function indexs(str, sub)

 character str(ARB), sub(ARB)

 DESCRIPTION
 ‘indexs’ scans the string ‘str’ for the first occurrence of the
 substring ‘sub’, and returns the index into ‘str’ where ‘sub’
 starts. If the substring is not found, a value of 0 is
 returned. The comparison is stricly character by character, as
 done in ‘strcmp’ or ‘equal’.

 SEE ALSO
 strcmp(3), equal(3), index(3)

 DIAGNOSTICS
 If the substring cannot be found, a value of 0 is returned.

 -1-

374

 Inihlp (3) 23-Mar-80 Inihlp (3)

 NAME
 Inihlp - initialize help facility on help archive

 SYNOPSIS
 integer function inihlp(file, ptrara, ptrsiz, unit)

 integer ptrsiz
 linepointer ptrara(ptrsiz)
 filedes unit
 character file(FILENAMESIZE)

 DESCRIPTION
 ‘inihlp’ opens ‘file’ at READ access, and notes the disk
 address of each archive header in the linepointer array,
 ‘ptrara’. If the number of headers is larger than ‘ptrsiz’,
 only ‘ptrsiz’ addresses are noted. The ratfor unit for using
 ‘mrkhlp’ and ‘puthlp’ is returned in ‘unit’. If the file could
 not be opened, ERR is returned as the function value;
 otherwise, OK is returned.

 SEE ALSO
 mrkhlp(3), puthlp(3), note(2)

 DIAGNOSTICS
 If the file cannot be opened, ERR is returned.

 -1-

375

 Initdi (3) 15-Mar-82 Initdi (3)

 NAME
 Initdi - initialize double integer array

 SYNOPSIS
 initdi(dblint)

 integer dblint(2)

 expands into:

 {
 dblint(1) = 0
 dblint(2) = 0
 }

 DESCRIPTION
 This macro expansion causes the double integer array argument
 to be initialized for use in the other double integer macros
 and routines. The double integer construct is used by all
 utilities which have to count quantities which might be larger
 than a 16-bit integer (32767), which seems to be most things of
 counting interest.

 The format of the double integers is:

 * the second element of the array varies from 0 to 9999

 * the first element of the array is the carry from the second
 element

 In this manner, up to 327,679,999 units of things can be
 counted before 16-bit architectures overflow.

 SEE ALSO
 incrdi(3), decrdi(3), adddi(3), subdi(3), ctodi(3), ditoc(3)

 DIAGNOSTICS

 -1-

376

 Inpack (3) 14-Mar-82 Inpack (3)

 NAME
 Inpack - initialize data for packing subroutines

 SYNOPSIS
 subroutine inpack(nxtcol, rightm, buf, fd)

 filedes fd
 integer nxtcol, rightm
 character buf(MAXLINE)

 DESCRIPTION
 ‘inpack’ initializes the parameters for packing data using
 ‘dopack’ and ‘flpack’. These routines pack words into a
 buffer, aligned in columns starting every 16 characters, using
 TAB characters to achieve the spacing. ‘inpack’ sets ‘nxtcol’
 to 1, and returns.

 SEE ALSO
 dopack(3), flpack(3)

 DIAGNOSTICS
 none

 -1-

377

 Itoc (3) 13-Nov-78 Itoc (3)

 NAME
 Itoc - convert integer to character string

 SYNOPSIS
 length = itoc(int, str, size)

 integer int, size
 character str(ARB)
 integer length returned as the number of characters needed

 DESCRIPTION
 Converts an integer ’int’ to characters in array ’str’, which
 is at most ’size’ characters long. ’length’ is returned as the
 number of characters the integer took, not including the EOS
 marker. Characters are stored in ascii character arrays
 terminated with an EOS marker.

 Negative numbers are handled correctly.

 SEE ALSO
 ctoi(3), putdec(3), putint(3), gitocf(3)

 DIAGNOSTICS
 None

 -1-

378

 Length (3) 13-Nov-78 Length (3)

 NAME
 Length - compute length of string

 SYNOPSIS
 n = length(str)

 character str(ARB)
 integer n returned as the number of characters in str

 DESCRIPTION
 Computes the length of a character string, excluding the EOS.
 The string is an ascii character array terminated with an EOS
 marker.

 SEE ALSO

 DIAGNOSTICS
 None

 -1-

379

 Logpmt (3) 23-Mar-80 Logpmt (3)

 NAME
 Logpmt - ‘prompt’ with history mechanism

 SYNOPSIS
 integer function logpmt(pstr, buf, fd)

 character pstr(ARB), buf(MAXLINE)
 filedes fd

 DESCRIPTION
 ‘logpmt’ is semantically the same as ‘prompt’, with the
 addition that is keeps a log of each line returned to the user,
 and permits the user to recall and edit lines previously
 entered. The writeup for ‘hsh’, the history shell, may be
 consulted for the syntax of the history manipulating commands.

 SEE ALSO
 prompt(2), rawpmt(3), ledpmt(3), hsh(1)

 DIAGNOSTICS
 Same as for prompt(2).

 -1-

380

 Lookup (3) 23-Mar-80 Lookup (3)

 NAME
 Lookup - retrieve information from a symbol table

 SYNOPSIS
 integer function lookup (symbol, info, table)
 character symbol (ARB)
 integer info (ARB)
 pointer table

 DESCRIPTION
 ’Lookup’ examines the symbol table given as its third argument
 for the presence of the character-string symbol given as its
 first argument. If the symbol is not present, ’lookup’ returns
 ’NO’. If the symbol is present, the information associated
 with it is copied into the information array passed as the
 second argument to ’lookup’, and ’lookup’ returns ’YES’.

 The symbol table used must have been created by the routine
 ’mktabl’. The size of the information array must be at least
 as great as the symbol table node size, specified at its
 creation.

 Note that all symbol table routines use dynamic storage space,
 which must have been previously initialized by a call to
 ’dsinit’.

 IMPLEMENTATION
 ’Lookup’ calls ’stlu’ to determine the location of the symbol
 in the table. If ’stlu’ returns NO, then the symbol is not
 present, and ’lookup’ returns NO. Otherwise, ’lookup’ copies
 the information field from the appropriate node of the symbol
 table into the information array and returns YES.

 ARGUMENTS MODIFIED
 info

 CALLS
 stlu

 SEE ALSO
 enter(3), delete(3), mktabl(3), rmtabl(3), stlu(3), sctabl(3),
 dsinit(3), dsget(3), dsfree(3)

 -1-

381

 Ludef (3) 14-Mar-82 Ludef (3)

 NAME
 Ludef - look up a defined symbol, returning its definition

 SYNOPSIS
 integer function ludef(name, defn, table)

 character name(ARB), defn(ARB)
 pointer table

 DESCRIPTION
 ‘ludef’ looks up ‘name’ in the symbol table ‘table’, returning
 its definition in ‘defn’. If the symbol is found, a value of
 YES is returned as the function value, otherwise, NO. ‘defn’
 is assumed to be large enough to hold the definition stored.
 ‘table’ must have been obtained by a call to ‘mktabl’.

 SEE ALSO
 mktabl(3), entdef(3)

 DIAGNOSTICS
 Returns a value of NO if the symbol cannot be found.

 -1-

382

 Makpat (3) 23-Jul-80 Makpat (3)

 NAME
 Makpat - prepare regular expression for pattern matching

 SYNOPSIS
 integer function makpat(arg, from, delim, pat)

 character arg(ARB), delim
 integer from, pat(MAXPAT)

 DESCRIPTION
 Makpat is similar to getpat, but slightly more general
 purpose. It is used to translate a regular expression into a
 format convenient for subsequent pattern matching via ’match’
 or ’amatch’. (For a complete description of regular
 expressions, see the writeup on the editor.)

 Makpat scans "arg" starting at location "from" and terminates
 the scan at the ’delim’ character. The characters between
 arg(from) and the delimiter are then encoded into a pattern
 suitable for subsequent matching. The function returns an
 index into arg of the next character past the delimiter, or ERR
 if there was some problem encoding the pattern.

 The pattern array should be dimensioned at least MAXPAT
 integers long, a definition available in the standard symbol
 definitions file.

 SEE ALSO
 getpat(3), match(3), amatch(3)

 DIAGNOSTICS
 A value of ERR is returned if a failure occurs in the
 encoding.

 -1-

383

 Maksub (3) 15-Mar-82 Maksub (3)

 NAME
 Maksub - make substitution string

 SYNOPSIS
 integer function maksub(arg, from, delim, sub)

 character arg(ARB), sub(MAXPAT)
 integer from

 DESCRIPTION
 Starting at ‘arg(from)’, a substitution string is encoded into
 ‘sub’ until the ‘delim’ character is sensed in ‘arg’. The next
 available character position in ‘arg’ is returned as the value
 of the function. If an error occurs in the encoding, a value
 of ERR is returned. This function is concerned with encoding
 the ditto character ’&’ and the tagged patterns (those of the
 form $1 ;.. $9). it also handles escaped characters (@c).

 SEE ALSO
 getsub(3), ed(1)

 DIAGNOSTICS
 A value of ERR is returned if the encoding fails for any
 reason.

 -1-

384

 Match (3) 23-Mar-80 Match (3)

 NAME
 Match - match pattern anywhere on a line

 SYNOPSIS
 integer function match (lin, pat)

 character lin(ARB)
 integer pat(MAXPAT)

 DESCRIPTION
 ’Match’ attempts to find a match for a regular expression
 anywhere in a given line of text. The first argument contains
 the text line; the second contains the pattern to be matched.
 The function return is YES if the pattern was found anywhere in
 the line, NO otherwise.

 The pattern in ’pat’ is a standard Software Tools encoded
 regular expression. ’Pat’ can be generated most conveniently
 by a call to the routine ’makpat’.

 IMPLEMENTATION
 ’Match’ calls ’amatch’ at each position in ’lin’, returning YES
 whenever ’amatch’ indicates it found a match. If the test
 fails at all positions, ’match’ returns NO.

 CALLS
 amatch(3)

 BUGS/DEFICIENCIES
 Not exactly blindingly fast.

 SEE ALSO
 amatch(3), makpat(3), maksub(3), catsub(3), find(1), ch(1),
 ed(1)

 -1-

385

 Mktabl (3) 23-Mar-80 Mktabl (3)

 NAME
 Mktabl - make a symbol table

 SYNOPSIS
 pointer function mktabl (nodesize)
 integer nodesize

 DESCRIPTION
 ’Mktabl’ creates a symbol table for manipulation by the
 routines ’enter’, ’lookup’, ’delete’, and ’rmtabl’. The symbol
 table is a general means of associating data with a symbol
 identified by a character string. The sole argument to
 ’mktabl’ is the number of (integer) words of information that
 are to be associated with each symbol. The function return is
 the address of the symbol table in dynamic storage space (see
 ’dsinit’ and ’dsget’). This value must be passed to the other
 symbol table routines to select the symbol table to be
 manipulated.

 If an allocation failure occurs, the value LAMBDA is returned.

 Note that dynamic storage space must be initialized by a call
 to ’dsinit’ before using any symbol table routines.

 IMPLEMENTATION
 ’Mktabl’ calls ’dsget’ to allocate space for a hash table in
 dynamic memory. Each entry in the hash table is the head of a
 linked list (with zero used as a null link) of symbol table
 nodes. ’Mktabl’ also records the nodesize specified by the
 user, so ’enter’ will know how much space to allocate when a
 new symbol is entered in the table.

 CALLS
 dsget

 SEE ALSO
 enter(3), lookup(3), delete(3), rmtabl(3), stlu(3), dsget(3),
 dsfree(3), dsinit(3), sctabl(3)

 DIAGNOSTICS
 If an allocation failure occurs, the value LAMBDA is returned.

 -1-

386

 Mrkhlp (3) 23-Mar-80 Mrkhlp (3)

 NAME
 Mrkhlp - mark help elements matching pattern

 SYNOPSIS
 integer function mrkhlp(unit, ptrara, key, outara)

 linepointer ptrara(ARB), outara(ARB)
 filedes unit
 character key(ARB)

 DESCRIPTION
 ‘mrkhlp’ goes through the set of archive modules pointed to by
 ‘ptrara’ and copies those which match the pattern specified by
 ‘key’ into ‘outara’, terminating the list with an element
 having the value NULLPOINTER. If the key is one of the strings
 "%" or "?", all elements in ‘ptrara’ are copied into ‘outara’;
 otherwise, only the module with a name which matches ‘key’
 exactly (via an ‘equal’ call) is copied. If none of the
 modules match ‘key’, ERR is returned; otherwise, OK is
 returned.

 SEE ALSO
 inihlp(3), puthlp(3), equal(3)

 DIAGNOSTICS
 If none of the modules match ‘key’, ERR is returned.

 -1-

387

 Ngetch (3) 23-Mar-80 Ngetch (3)

 NAME
 Ngetch - get a (possibly pushed back) character

 SYNOPSIS
 character function ngetch(c, fd)

 character c
 filedes fd

 DESCRIPTION
 ‘ngetch’ fetches the next character into the variable ‘c’ and
 also returns it as its value. If there are any characters on
 the push back buffer, the most recently pushed back character
 will be returned and removed from the buffer.

 SEE ALSO
 putbak(3), pbstr(3), pbinit(3), pbdecl(3)

 DIAGNOSTICS
 If an end of file is reached, EOF is returned.

 -1-

388

 Pbdecl (3) 15-Mar-82 Pbdecl (3)

 NAME
 Pbdecl - declare push-back buffer storage

 SYNOPSIS
 PB_DECL(Buffer_size)

 expands into:

 integer pbp, pbsize
 character pbbuf(Buffer_size)

 common / cpback / pbp, pbsize, pbbuf

 DESCRIPTION
 Invocation of this macro causes the buffer and associated
 variables needed by the push-back buffer routines to be
 declared. This macro expansion must appear in the modules
 which invoke the ‘pbinit’ routine. The same value of
 ‘Buffer_size’ must be used in the ‘pbinit’ call that is used in
 the PB_DECL declaration.

 ‘Buffer_size’ must have been defined prior to the expansion of
 the macro, usually by a statement of the form:

 define(Buffer_size,512)

 for example.

 SEE ALSO
 pbinit(3)

 DIAGNOSTICS

 -1-

389

 Pbinit (3) 23-Mar-80 Pbinit (3)

 NAME
 Pbinit - initialize push-back buffer

 SYNOPSIS
 subroutine pbinit(bufsiz)

 integer bufsiz

 DESCRIPTION
 ‘pbinit’ permits the user to initialize the push-back buffer
 without knowledge of its implementation. After initialization,
 ‘ngetch’, ‘putbak’ and ‘pbstr’ may be used. The following
 declaration must be made in the module which calls ‘pbinit’ to
 create the common block which these routines use:
 PB_DECL(bufsiz)
 This declaration causes a character array ‘bufsiz’ characters
 to be created for use by the routines.

 SEE ALSO
 ngetch(3), putbak(3), pbstr(3), pbdecl(3)

 DIAGNOSTICS

 -1-

390

 Pbstr (3) 23-Mar-80 Pbstr (3)

 NAME
 Pbstr - push string onto push back buffer

 SYNOPSIS
 subroutine pbstr(in)

 character in(ARB)

 DESCRIPTION
 ‘pbstr’ pushes the characters in the string ‘in’ onto the push
 back buffer, from which they will be retrieved via future
 ‘ngetch’ calls. If there is insufficient room in the buffer
 for the characters, an error message to that effect is
 displayed and the program terminated.

 SEE ALSO
 pbinit(3), putbak(3), ngetch(3), pbdecl(3)

 DIAGNOSTICS
 If there is no room for the string, an error message is
 displayed and the program is terminated.

 -1-

391

 Putbak (3) 23-Mar-80 Putbak (3)

 NAME
 Putbak - push character onto push back buffer

 SYNOPSIS
 subroutine putbak(c)

 character c

 DESCRIPTION
 ‘putbak’ pushes ‘c’ onto the push back buffer, from which it
 will be removed via a future ‘ngetch’ call. If there is no
 room for the character, an error message will be displayed to
 that effect and the program terminated.

 SEE ALSO
 pbinit(3), pbstr(3), ngetch(3), pbdecl(3)

 DIAGNOSTICS
 If there is no room for the character, an error message is
 displayed and the program terminated.

 -1-

392

 Putc (3) 10-Nov-78 Putc (3)

 NAME
 Putc - write character to standard output

 SYNOPSIS
 call putc (c)

 character c

 DESCRIPTION
 Putc writes a character onto the standard output file
 (STDOUT). If c is a NEWLINE character, the appropriate action
 is taken to indicate the end of the record on the file. The
 character is assumed to be in ascii format; however, if the
 output file is not ascii, characters are mapped into their
 corresponding format.

 SEE ALSO
 putch(2), putlin(2)

 DIAGNOSTICS
 None

 -1-

393

 Putdec (3) 13-Nov-78 Putdec (3)

 NAME
 Putdec - write integer n in field width >=w

 SYNOPSIS
 call putdec(n, w)

 integer n, w

 DESCRIPTION
 This routine writes onto the standard output the number ’n’ as
 a string of at least ’w’ characters, including a sign if ’n’ is
 negative. If fewer than ’w’ characters are needed, blanks are
 inserted to the left to make up the count; if more than ’w’ are
 needed, more are provided.

 SEE ALSO
 itoc(3), putint(3)

 DIAGNOSTICS
 None

 -1-

394

 Puthlp (3) 23-Mar-80 Puthlp (3)

 NAME
 Puthlp - output marked modules from help archive

 SYNOPSIS
 subroutine puthlp(unit, outara, key, out, putout)

 linepointer outara(ARB)
 filedes unit, out
 character key(ARB)
 external putout

 DESCRIPTION
 ‘puthlp’ outputs the help archive entries marked in ‘outara’
 onto ratfor unit ‘out’ using the external routine ‘putout’ via
 calls of the form
 call putout(buf, out)
 in a format depending upon ‘key’. If ‘key’ is the string "%",
 only the first line of each marked entry is output; otherwise,
 the second through n-th lines of each entry is output.

 SEE ALSO
 inihlp(3), mrkhlp(3)

 DIAGNOSTICS

 -1-

395

 Putint (3) 23-Jul-80 Putint (3)

 NAME
 Putint - write integer n onto file fd in field width >=w

 SYNOPSIS
 call putint(n, w, fd)

 integer n, w, fd

 DESCRIPTION
 This routine writes on the file specified by ’fd’ the number
 ’n’ as a string of at least ’w’ characters, including a sign if
 ’n’ is negative. If fewer than ’w’ characters are needed,
 blanks are inserted to the left to make up the count; if more
 than ’w’ are needed, more are provided. If ’w’ is negative,
 the number is left-justified in the field.

 ’Fd’ is a a file descriptor as returned by open or create.

 SEE ALSO
 itoc(3), putdec(3)

 DIAGNOSTICS
 None

 -1-

396

 Putlnl (3) 16-Mar-82 Putlnl (3)

 NAME
 Putlnl - output line and flush, if necessary

 SYNOPSIS
 subroutine putlnl(buf, fd)

 character buf(ARB)
 filedes fd

 DESCRIPTION
 ‘putlnl’ calls ‘putlin’ to output the line. It then checks to
 see if the last character in the buffer is a NEWLINE (’@n’); if
 not, it outputs a NEWLINE character to flush the line. If
 ‘buf’ is empty, a NEWLINE character is output.

 SEE ALSO
 putlin(2)

 DIAGNOSTICS
 None

 -1-

397

 Putptr (3) 15-Mar-82 Putptr (3)

 NAME
 Putptr - output linepointer as a character string

 SYNOPSIS
 subroutine putptr(ptr, fd)

 linepointer ptr
 filedes fd

 DESCRIPTION
 ‘putptr’ formats the linepointer ‘ptr’ using ‘ptrtoc’, and
 outputs the resulting string to the ratfor unit ‘fd’.

 SEE ALSO
 ptrtoc(2), note(2), seek(2)

 DIAGNOSTICS
 none

 -1-

398

 Putstr (3) 23-Jul-80 Putstr (3)

 NAME
 Putstr - write str onto file fd in field width >=w

 SYNOPSIS
 call putstr(str, w, fd)

 character str(ARB)
 integer w, fd

 DESCRIPTION
 Putstr writes the character string ’str’ onto the file
 specified by ’fd’, in a field at least ’w’ characters long. If
 fewer than ’w’ characters are needed, blanks are inserted to
 the left to make up the count; if more than ’w’ are needed,
 more are provided. If ’w’ is negative, the characters are
 left-justified in the field.

 ’Fd’ is a a file descriptor as returned by open or create.

 SEE ALSO
 putch(2), putlin(2), remark(2), error(3)

 DIAGNOSTICS
 None

 -1-

399

 Query (3) 25-Sep-80 Query (3)

 NAME
 Query - print command usage information on request

 SYNOPSIS
 subroutine query (usage)
 hollerith_string usage (ARB)

 DESCRIPTION
 Many Software Tools commands will supply usage information when
 invoked with a single argument consisting only of a question
 mark. ’Query’ exists to simplify this convention for the
 programmer.

 The sole argument is a period-terminated hollerith literal,
 such as that passed to ’error’.

 When called, ’query’ checks to see that the command calling it
 was invoked with exactly one argument, and that that argument
 is a question mark. If so, the usage message is passed along
 to ’error’ and the command terminates. If not, ’query’ returns
 quietly.

 IMPLEMENTATION
 Two calls to ’getarg’, some tests, and a call to ’error’.

 CALLS
 error

 SEE ALSO
 error(3)

 -1-

400

 Rmdef (3) 17-Dec-82 Rmdef (3)

 NAME
 Rmdef - remove a symbol and its definition from a symbol table

 SYNOPSIS
 subroutine rmdef(symbol, table)

 character symbol(ARB)
 pointer table

 DESCRIPTION
 ‘rmdef’ removes a symbol and its definition from the symbol
 table ‘table’. ‘table’ must have been obtained by a call to
 ‘mktabl’.

 SEE ALSO
 mktabl(3), ludef(3), entdef(3)

 DIAGNOSTICS

 -1-

401

 Rmtabl (3) 23-Mar-80 Rmtabl (3)

 NAME
 Rmtabl - remove a symbol table

 SYNOPSIS
 subroutine rmtabl (table)
 pointer table

 DESCRIPTION
 ’Rmtabl’ is used to remove a symbol table created by ’mktabl’.
 The sole argument is the address of a symbol table in dynamic
 storage space, as returned by ’mktabl’.

 ’Rmtabl’ deletes each symbol still in the symbol table, so it
 is normally not necessary to empty a symbol table before
 deleting it. However, if the information associated with a
 symbol includes a pointer to dynamic storage space, the space
 will not be reclaimed. (This problem can be averted by
 scanning the symbol table with ’sctabl’ and freeing dynamic
 objects, then removing the symbol table with ’rmtabl’.)

 Please see the manual entry for ’dsinit’ for instructions on
 initializing the dynamic storage space used by the symbol table
 routines.

 IMPLEMENTATION
 ’Rmtabl’ traverses each chain headed by the hash table created
 by ’mktabl’. Each symbol table node encountered along the way
 is returned to free storage by a call to ’dsfree’. Once all
 symbols are removed, the hash table itself is returned by a
 similar call.

 CALLS
 dsfree

 SEE ALSO
 mktabl(3), enter(3), lookup(3), delete(3), dsget(3), dsfree(3),
 dsinit(3), sctabl(3)

 -1-

402

 Scopy (3) 13-Nov-78 Scopy (3)

 NAME
 Scopy - copy string at from(i) to to(j)

 SYNOPSIS
 call scopy(from, i, to, j)

 character from(ARB), to(ARB)
 integer i, j

 DESCRIPTION
 Copies the (sub)string of ’from’, starting in location ’i’,
 into array ’to’, starting at ’j’.

 SEE ALSO
 stcopy(3), addset(3), concat(3)

 DIAGNOSTICS
 None

 -1-

403

 Sctabl (3) 16-Mar-80 Sctabl (3)

 NAME
 Sctabl - scan all symbols in a symbol table

 SYNOPSIS
 integer function sctabl (table, symbol, info, posn)
 pointer table, posn
 integer info (ARB)
 character symbol (ARB)

 DESCRIPTION
 ’Sctabl’ provides a means of accessing all symbols present in a
 symbol table (c.f. ’mktabl’) without knowledge of the table’s
 internal structure. After a simple initialization (see below),
 successive calls to ’sctabl’ return symbols and their
 associated information. When the return value of ’sctabl’ is
 EOF, the entire table has been scanned.

 The first argument is the index in dynamic storage of the
 symbol table to be accessed. (This should be the value
 returned by ’mktabl’.)

 The second and third arguments receive the character text of
 and integer information associated with the symbol currently
 under scan.

 The fourth argument is used to keep track of the current
 position in the symbol table. It must be initialized to zero
 before ’sctabl’ is called for the first time for a given scan.

 The function return is EOF when the entire table has been
 scanned, not EOF otherwise.

 IMPLEMENTATION
 If ’posn’ is zero, ’sctabl’ assigns the location of a two-word
 block in the table header to it. These words are used to keep
 track of (1) the hash table bucket currently in use and (2) the
 position in the bucket’s list of the next symbol. If a symbol
 is available in the current list, ’sctabl’ returns its data and
 records the position of the next symbol in the list; otherwise,
 it moves to the next bucket and examines that list. If there
 are no more buckets in the symbol table, EOF is returned as the
 function value and ’posn’ is set to zero.

 ARGUMENTS MODIFIED
 symbol, info, posn

 CALLS
 dsget, dsfree

 BUGS/DEFICIENCIES

 -1-

404

 Sctabl (3) 16-Mar-80 Sctabl (3)

 A call to ’enter’ must be made to update the information
 associated with a symbol. If new symbols are entered or old
 symbols deleted during a scan, the results are unpredictable.
 The argument order is bogus; all the other symbol table
 routines have the table pointer as the last argument.

 SEE ALSO
 lookup(3), delete(3), mktabl(3), rmtabl(3), stlu(3), dsget(3),
 dsfree(3), dsinit(3)

 -2-

405

 Sdrop (3) 23-Mar-80 Sdrop (3)

 NAME
 Sdrop - drop characters from a string (APL-style)

 SYNOPSIS
 integer function sdrop (from, to, length)
 character from (ARB), to (ARB)
 integer length

 DESCRIPTION
 ’Sdrop’ copies all but ’length’ characters from the ’from’
 string into the ’to’ string and returns as its result the
 number of characters copied. If ’length’ is positive, the
 omitted characters are relative to the beginning of the ’from’
 string; if it is negative, they are relative to the end of the
 string.

 ARGUMENTS MODIFIED
 to

 CALLS
 ctoc, length

 SEE ALSO
 stake(3), index(3)

 -1-

406

 Sdupl (3) 14-Mar-82 Sdupl (3)

 NAME
 Sdupl - duplicate a string in dynamic storage

 SYNOPSIS
 pointer function sdupl(str)

 character str(ARB)

 DESCRIPTION
 ‘sdupl’ allocates space for ‘str’ in dynamic storage, and
 copies the string into the allocated space. A pointer to the
 dynamic space is returned as the value of the function. If the
 allocation fails, a value of LAMBDA is returned. ‘dsinit’ must
 have been called before this function can be called.

 SEE ALSO
 dsinit(3)

 DIAGNOSTICS
 Returns a value of LAMBDA if the allocation fails.

 -1-

407

 Settab (3) 15-Mar-82 Settab (3)

 NAME
 Settab - set tab stops

 SYNOPSIS
 subroutine settab(buf, tabs)

 character buf(ARB)
 integer tabs(MAXLINE)

 DESCRIPTION
 ‘settab’ reads the token found in ‘buf’, and generates the tab
 stops in the array tabs. If ‘buf’ is empty, tabstops are set
 starting in column 9 and every 8 columns thereafter. Consult
 the entries for ‘entab’ and ‘detab’ for the actual arguments
 which can be passed in ‘buf’. After this call, ‘tabs’ is
 ready for use in calling the ‘tabpos’ routine.

 SEE ALSO
 argtab(3), tabpos(3), entab(1), detab(1)

 DIAGNOSTICS
 none

 -1-

408

 Shell (3) 15-Mar-82 Shell (3)

 NAME
 Shell - shell sort integer array

 SYNOPSIS
 subroutine shell(v, n)

 integer n, v(n)

 DESCRIPTION
 ‘shell’ performs a shell sort on the array of integers found in
 v(1) ... v(n). This algorithm is to be preferred over that
 used in ‘bubble’.

 SEE ALSO
 bubble(3)

 DIAGNOSTICS
 none

 -1-

409

 Skipbl (3) 13-Nov-78 Skipbl (3)

 NAME
 Skipbl - skip blanks and tabs at str(i)

 SYNOPSIS
 call skipbl(str, i)

 character str(ARB)
 integer i # i is incremented

 DESCRIPTION
 Starting at position ’i’ of array ’str’, increments i while
 str(i) is a BLANK or TAB. ’Str’ is an ascii character array
 terminated with an EOS marker.

 SEE ALSO
 getwrd(3)

 DIAGNOSTICS
 None

 -1-

410

 Stake (3) 23-Mar-80 Stake (3)

 NAME
 Stake - take characters from a string (APL-style)

 SYNOPSIS
 integer function stake (from, to, length)
 character from (ARB), to (ARB)
 integer length

 DESCRIPTION
 ’Stake’ copies the number of characters specified by ’length’
 from the ’from’ string into the ’to’ string and returns as its
 result the number of characters copied. If ’length’ is
 positive, the characters are copied from the beginning of
 ’from’; if it is negative, they are copied from the end of
 ’from’.

 ARGUMENTS MODIFIED
 to

 CALLS
 ctoc, length

 SEE ALSO
 sdrop(3), index(3)

 -1-

411

 Stcopy (3) 6-Jun-79 Stcopy (3)

 NAME
 Stcopy - copy string at from(i) to to(j); increment j

 SYNOPSIS
 call stcopy(from, i, to, j)

 character from(ARB), to(ARB)
 integer i
 integer j # j is incremented

 DESCRIPTION
 Copies the (sub)string of ’from’, starting in location ’i’,
 into array ’to’, starting at ’j’. ’j’ is incremented to point
 to the next available position in ’to’ (i.e. the EOS marker
 inserted by the copy). In all other respects, ’stcopy’ is
 similar to ’scopy’.

 SEE ALSO
 scopy(3), concat(3), addset(3)

 DIAGNOSTICS
 None

 -1-

412

 Stlu (3) 14-Mar-82 Stlu (3)

 NAME
 Stlu - symbol table lookup primitive

 SYNOPSIS
 integer function stlu(symbol, node, pred, table)

 character symbol(ARB)
 pointer node, pred, table

 DESCRIPTION
 ‘stlu’ looks up the token ‘symbol’ in the symbol table ‘table’,
 returning a pointer to the symbol in ‘node’ if it found. The
 variable ‘pred’ is used as a scratch pointer during the
 search. If the symbol is found, a value of YES is returned,
 otherwise, NO. ‘table’ is the return value of ‘mktabl’, and
 the symbol would have been entered by using the ‘enter’
 function.

 SEE ALSO
 mktabl(3), enter(3)

 DIAGNOSTICS
 A value of NO is returned if the symbol cannot be found in the
 table.

 -1-

413

 Strcmp (3) 23-Jul-80 Strcmp (3)

 NAME
 Strcmp - compare 2 strings

 SYNOPSIS
 stat = strcmp (str1, str2)

 character str1(ARB), str2(ARB)
 integer stat is returned as -1, 0, or +1

 DESCRIPTION
 Strcmp compares its aguments and returns an integer greater
 than, equal to, or less than 0, depending on whether str1 is
 lexicographically greater than, equal to, or less than str2.

 SEE ALSO
 equal(3)

 DIAGNOSTICS
 None

 -1-

414

 Strcpy (3) 26-Oct-81 Strcpy (3)

 NAME
 Strcpy - copy string at "from" to "to".

 SYNOPSIS
 call strcpy(from, to)

 character from(ARB), to(ARB)

 DESCRIPTION
 Copies the string starting at "from" into "to".

 SEE ALSO
 scopy(3), stcopy(3), addset(3), concat(3)

 DIAGNOSTICS
 None

 -1-

415

 Strim (3) 23-Mar-80 Strim (3)

 NAME
 Strim - trim trailing blanks and tabs from a string

 SYNOPSIS
 integer function strim (str)
 character str (ARB)

 DESCRIPTION
 ’Strim’ is used to trim trailing blanks and tabs from the
 EOS-terminated string passed as its first argument. The
 function return is the length of the trimmed string, excluding
 EOS.

 IMPLEMENTATION
 One pass is made through the string, and the position of the
 last non-blank, non-tab character remembered. When the entire
 string has been scanned, an EOS is planted immediately after
 the last non-blank.

 ARGUMENTS MODIFIED
 str

 SEE ALSO
 stake(3), sdrop(3)

 -1-

416

 Subdi (3) 15-Mar-82 Subdi (3)

 NAME
 Subdi - subtract double integer arrays

 SYNOPSIS
 subdi(dbl1,dbl2)

 integer dbl1(1), dbl2(2)

 expands into:

 {
 dbl2(1) = dbl2(1) - dbl1(1)
 dbl2(2) = dbl2(2) - dbl1(2)
 if (dbl2(2) < 0)
 {
 dbl2(1) = dbl2(1) - 1
 dbl1(1) = dbl1(1) + 10000
 }
 }

 DESCRIPTION
 Invocation of this macro causes the first double integer to be
 subtracted from the second. If a carry is necessary, it is
 performed. See the entry for ‘initdi’ for more information of
 double integers.

 SEE ALSO
 initdi(3), incrdi(3), decrdi(3), adddi(3)

 DIAGNOSTICS

 -1-

417

 Tabpos (3) 15-Mar-82 Tabpos (3)

 NAME
 Tabpos - determine if at a tab stop

 SYNOPSIS
 integer function tabpos(column, tabs)

 integer column, tabs(MAXLINE)

 DESCRIPTION
 This function returns YES/NO depending upon whether ‘column’
 corresponds to a tab stop or not. The array ‘tabs’ must have
 been set up via a call to ‘settab’ before calling ‘tabpos’.

 SEE ALSO
 settab(3), argtab(3)

 DIAGNOSTICS
 none

 -1-

418

 Tbinit (3) 23-Mar-80 Tbinit (3)

 NAME
 Tbinit - initialize simple lookup table

 SYNOPSIS
 subroutine tbinit(size)

 integer size

 DESCRIPTION
 ‘tbinit’ causes a symbol table to be created for the user by
 calling ‘mktabl’ in anticipation of calling ‘tbinst’ and
 ‘tblook’, thus providing the same functionality as the old
 ‘lookup’ and ‘instal’ routines from rat4 without forcing the
 user to worry about the dynamic storage manipulation routines.
 ‘size’ is the size of the dynamic storage region declared in
 the caller via
 DS_DECL(Mem,size)

 SEE ALSO
 tbinst(3), tblook(3), dsdecl(3)

 DIAGNOSTICS

 -1-

419

 Tbinst (3) 23-Mar-80 Tbinst (3)

 NAME
 Tbinst - install (name,defn) pair in lookup table

 SYNOPSIS
 subroutine tbinst(name, defn)

 character name(ARB), defn(ARB)

 DESCRIPTION
 ‘tbinst’ installs the (name,defn) pair in the lookup table
 initialized by a ‘tbinit’ call. If there is no room in the
 table, the message "in tbinst: no room for new definition." is
 displayed and control returned to the user.

 SEE ALSO
 tbinit(3), tblook(3)

 DIAGNOSTICS
 If there is no room for the (name,defn) pair, an error message
 is displayed and control returned back to the caller.

 -1-

420

 Tblook (3) 23-Mar-80 Tblook (3)

 NAME
 Tblook - look up name in simple lookup table

 SYNOPSIS
 integer function tblook(name, defn)

 character name(ARB), defn(ARB)

 DESCRIPTION
 ‘tblook’ looks up ‘name’ in the lookup table. If found, its
 definition is copied into ‘defn’ and the value YES returned as
 the function value; otherwise, NO is returned.

 SEE ALSO
 tbinit(3), tbinst(3)

 DIAGNOSTICS
 If the name is not in the table, a value of NO is returned.

 -1-

421

 Tooldr (3) 12-Mar-82 Tooldr (3)

 NAME
 Tooldr - locate user-specific tool directory

 SYNOPSIS
 subroutine tooldr(direct, dtype)

 character direct(FILENAMESIZE)
 integer dtype

 DESCRIPTION
 ‘tooldr’ returns the directory in which the caller’s
 tools-specific files are kept. If ‘dtype’ has the value LOCAL,
 then the string is returned in the native operating system
 format; otherwise, it is returned in pathname format. It is
 returned as an EOS terminated string.

 IMPLEMENTATION
 If the system supports Tree-structured file systems, as
 evidenced by the definition of TREE_STRUCT_FILE_SYS in
 ‘˜bin/symbols’, then the tools directory is obtained by calling
 ‘homdir’ and appending the string "tools/" to it. If the
 system supports a flat file system, ‘homdir’ is simply called.
 The routine is called by ‘impath(3)’ to build the standard
 search path for many of the tools.

 SEE ALSO
 homdir(2), impath(3)

 DIAGNOSTICS

 -1-

422

 Type (3) 13-Nov-78 Type (3)

 NAME
 Type - determine type of character

 SYNOPSIS
 t = type(c)

 character c
 character t is returned as LETTER, DIGIT, or c

 DESCRIPTION
 This function determines whether the character ’c’ is a letter,
 a digit, or something else; it returns LETTER, DIGIT, or the
 character itself.

 SEE ALSO
 index(3)

 DIAGNOSTICS
 None

 -1-

423

 Upper (3) 13-Nov-78 Upper (3)

 NAME
 Upper - convert string to upper case

 SYNOPSIS
 call upper(str)

 character str(ARB)

 DESCRIPTION
 Converts the array ’str’ to upper case, if not already there.
 If any characters are non-alphabetic, it leaves them
 unchanged. ’Str’ is an ascii character array terminated with
 an EOS marker.

 SEE ALSO
 cupper(3), fold(3), clower(3)

 DIAGNOSTICS
 None

 -1-

424

 Wkday (3) 23-Mar-80 Wkday (3)

 NAME
 Wkday - get day-of-week corresponding to month, day, year

 SYNOPSIS
 integer function wkday (month, day, year)
 integer month, day, year

 DESCRIPTION
 ’Wkday’ is used to return the day-of-the-week corresponding to
 a given date. The three arguments completely specify the date:
 the month (1-12), day (1-28, 29, 30, or 31), and year (e.g.
 1980). The function return is the ordinal number of the
 day-of-the-week (1 == Sunday, 7 == Saturday).

 IMPLEMENTATION
 Zeller’s Congruence.

 SEE ALSO
 getnow(2), fmtdat(3), date(1)

 -1-

425

 ____ _ _ _ _
/ ___| ___ ___| |_(_) ___ _ __ | || |
___ \ / _ \/ __| __| |/ _ \| ’_ \ | || |_ _____
 ___) | __/ (__| |_| | (_) | | | | |__ _| |_____|
|____/ ___|___|__|_|___/|_| |_| |_|

 ____ _
| _ \ _ __(_)_ __ ___ ___ _ __ ___
| |_) | ’__| | ’_ ‘ _ \ / _ \ ’__/ __|
| __/| | | | | | | | | __/ | __ \
|_| |_| |_|_| |_| |_|___|_| |___/

426

Ed (4) 28-Oct-80 Ed (4)

NAME
 Ed - text editor

 A Tutorial Introduction to the Software Tools TEXT EDITOR

 B. Kernighan
 Bell Laboratories

 and

 M.J. Gralia
 Johns Hopkins University - Applied Physics Laboratory

INTRODUCTION
 EEEddd is a "text editor", that is, an interactive program for
 creating and modifying "text", using directions provided by a
 user at a terminal. The text is often a document like this one,
 or a program or perhaps data for a program.

 This introduction is meant to simplify learning eeeddd... The
 recommended way to learn eeeddd is to read this document,
 simultaneously using eeeddd to follow the examples, then to read the
 description in section I of the Software Tools manual, all the
 while experimenting with eeeddd... (Solicitation of advice from
 experienced users is also useful.)

 Do the exercises! They cover material not completely discussed
 in the actual text. An appendix summarizes the commands.

DISCLAIMER
 This is an introduction and a tutorial. For this reason, no
 attempt is made to cover more than a part of the facilities that
 eeeddd offers (although this fraction includes the most useful and
 frequently used parts). Also, there is not enough space to
 explain basic Software Tools procedures. We will assume that
 you know how to log on and access the Software Tools, and that
 you have at least a vague understanding of what a file is.

 You must also know what character to type as the end-of-line on
 your particular terminal. It is almost always a "return".
 Throughout, we will refer to this character, whatever it is, as
 "newline".

CASES
 And about case: it is traditional to use both upper and lower

 -1-

427

Ed (4) 28-Oct-80 Ed (4)

 case characters when using the Software Tools, but it is not
 required. In describing eeeddd,,, we will follow that convention, but
 eeeddd will work with either.

 But a caution: eeeddd differentiates cases. If your files contain
 both and your terminal is in upper case, you can get into a
 "deadly embrace" situation in which you can see a character but
 can’t delete it. The solution is simple - always use both upper
 and lower case with Software Tools.

GETTING STARTED
 We’ll assume that you have logged in. The easiest way to get eeeddd
 is to type

 ed (followed by a newline)

 You are now ready to go - eeeddd is waiting for you to tell it what
 to do.

CREATING TEXT - the Append command ‘‘a’’
 As our first problem, suppose we want to create some text
 starting from scratch. Perhaps we are typing the very first
 draft of a paper; clearly it will have to start somewhere, and
 undergo modifications later. This section will show how to get
 some text in, just to get started. Later we’ll talk about how
 to change it.

 When eeeddd is first started, it is rather like working with a blank
 piece of paper - there is no text or information present. This
 must be supplied by the person using eeeddd;;; it is usually done by
 typing in the text, or by reading it into eeeddd from a file. We
 will start by typing in some text, and return shortly to how to
 read files.

 First a bit of terminology. In eeeddd jargon, the text being marked
 on is said to be "kept in a buffer." Think of the buffer as a
 work space, if you like, or simply as the information that you
 are going to be editing. In effect the buffer is like the piece
 of paper on which we will write things, then change some of
 them, and finally file the whole thing away for another day.

 The user tells eeeddd what to do to his text by typing instructions
 called "commands". Most commands consist of a single letter.
 Each command is typed on a separate line. (Sometimes the
 command is preceded by information about what line or lines of
 text are to be affected - we will discuss these shortly.)

 The first command is aaappppppeeennnddd,,, written as the letter

 a

 -2-

428

Ed (4) 28-Oct-80 Ed (4)

 all by itself. It means """aaappppppeeennnddd (or add) text lines to the
 buffer, as I type them in." Appending is rather like writing
 fresh material on a piece of paper.

 So to enter lines of text into the buffer, we just type an "a"
 followed by a newline, followed by the lines of text we want,
 like this:

 a
 Now is the time
 for all good men
 to come to the aid of their party.
 .

 The only way to stop appending is to type a line that contains
 only a period. The "." is used to tell eeeddd that we have finished
 appending. (Even experienced users forget that terminating "."
 sometimes. If eeeddd seems to be ignoring you, type an extra line
 with just "." on it. You may then find you’ve added some
 garbage lines to your text, which you’ll have to take out
 later.)

 After the append command has been done, the buffer will contain
 the three lines

 Now is the time
 for all good men
 to come to the aid of their party.

 The "a" and "." aren’t there, because they are not text.

 To add more text to what we already have, just issue another "a"
 command, and continue typing. (Try it now - it won’t always
 work right until we explain about line numbers.)

ERROR MESSAGES - ‘‘?’’
 If at any time you make an error in the commands you type to eeeddd,,,
 it will tell you by typing

 ?

 This is about as cryptic as it can be, but with practice, you
 can usually figure out how you goofed.

WRITING TEXT OUT AS A FILE - the Write command ‘‘w’’
 It’s likely that we’ll want to save our text for later use. To
 write out the contents of the buffer onto a file, we use the
 wwwrrriiittteee command

 w

 -3-

429

Ed (4) 28-Oct-80 Ed (4)

 followed by the filename we want to write on. This will copy
 the buffer’s contents onto the specified file (destroying any
 previous information on the file). To save the text on a file
 named "junk", for example, type

 w junk

 Leave a space between "w" and the file name. EEEddd will respond by
 printing the number of lines it wrote out. In our case, eeeddd
 would respond with

 3

 Writing a file just makes a copy of the text - the buffer’s
 contents are not disturbed, so we can go on adding lines to it.
 This is an important point. EEEddd at all times works on a copy of
 a file, not the file itself. No change in the contents of a
 file takes place until you give a "w" command. (Writing out the
 text onto a file from time to time as it is being created is a
 good idea, since if the system crashes or if you make some
 horrible mistake, you will lose all the text in the buffer, but
 any text that was written onto a file is relatively safe.)

LEAVING ED - the Quit command ‘‘q’’
 To terminate a session with eeeddd,,, save the text you’re working on
 by writing it onto a file using the "w" command, and then type
 the command

 q

 which stands for qqquuuiiittt... At this point your buffer vanishes, with
 all its text, which is why you want to write it out before
 quitting.

EXERCISE 1:
 Enter eeeddd and create some text using

 a
 ...text...
 .

 Write it out using "w". Then leave eeeddd with the "q" command, and
 print the file, to see that everything worked. (To print a
 file, say

 cat filename

 Also try

 crt filename

 -4-

430

Ed (4) 28-Oct-80 Ed (4)

 Here, you need to enter a newline (to see the next page) or "q"
 (to quit displaying the text).

READING TEXT FROM A FILE - the Edit command ‘‘e’’
 A common way to get text into the buffer is to read it from a
 file in the file system. This is what you do to edit text that
 you saved with the "w" command in a previous session. The eeedddiiittt
 command "e" fetches the entire contents of a file into the
 buffer. So if we had saved the three lines "Now is the time",
 etc., with a "w" command in an earlier session, the eeeddd command

 e junk

 would fetch the entire contents of the file "junk" into the
 buffer, and respond

 3

 which is the number of lines in "junk". If anything was already
 in the buffer, it is deleted first.

 If we use the "e" command to read a file into the buffer, then
 we need not use a file name after a subsequent "w" command; eeeddd
 remembers the last file name used in an "e" command, and "w"
 will write on this file. Thus a common way to operate is

 ed
 e file
 [editing session]
 w
 q

 You can find out at any time what file named eeeddd is remembering
 by typing the fffiiillleee command "f". In our case, if we typed

 f

 eeeddd would reply

 junk

READING TEXT FROM A FILE - the Read command ‘‘r’’
 Sometimes we want to read a file into the buffer without
 destroying anything that is already there. This is done by the
 rrreeeaaaddd command "r". The command

 r junk

 will read the file "junk" into the buffer; it adds it to the
 buffer (after the current line). So if we do a read after an

 -5-

431

Ed (4) 28-Oct-80 Ed (4)

 edit:

 e junk
 r junk

 the buffer will contain tttwwwooo copies of the text (six lines).

 Now is the time
 for all good men
 to come to the aid of their party.
 Now is the time
 for all good men
 to come to the aid of their party.

 Like the "w" and "e" commands, "r" prints the number of newlines
 read in, after the reading operation is complete.

 Generally speaking, "r" is much less used than "e".

EXERCISE 2:
 Experiment with the "e" command - try reading and printing
 various files. You may get an error "?.", typically because you
 spelled the file name wrong. Try alternately reading and
 appending to see that they work similarly. Verify that

 ed filename

 is exactly equivalent to

 ed
 e filename

 What does

 f filename

 do?

PRINTING THE CONTENTS OF THE BUFFER - the Print command ‘‘p’’
 To ppprrriiinnnttt or list the contents of the buffer (or parts of it) on
 the terminal, we use the print command

 p

 The way this is done is as follows. We specify the lines where
 we want printing to begin and where we want it to end, separated
 by a comma, and followed by the letter "p". Thus to print the
 first two lines of the buffer, for example, (that is, lines 1
 through 2) we say

 -6-

432

Ed (4) 28-Oct-80 Ed (4)

 1,2p (starting line=1, ending line=2)

 EEEddd will respond with

 Now is the time
 for all good men

 Suppose we want to print aaallllll the lines in the buffer. We could
 use "1,3p" as above if we knew there were exactly 3 lines in the
 buffer. But in general, we don’t know how many there are so
 what do we use for the ending line number? EEEddd provides a
 shorthand symbol for "line number of last line in buffer" - the
 dollar sign "$". Use it this way:

 1,$p

 This will print aaallllll the lines in the buffer (line 1 to the last
 line.)

 To print the lllaaasssttt line of the buffer, we could use

 $,$p

 but eeeddd lets us abbreviate this to

 $p

 We can print any single line by typing the line number followed
 by a "p". Thus

 1p

 produces the response

 Now is the time

 which is the first line of the buffer.

 In fact, eeeddd lets us abbreviate even further: we can print any
 single line by typing jjjuuusssttt the line number - no need to type the
 letter "p". So if we say

 $

 eeeddd will print the last line of the buffer for us.

 We can also use "$" in combinations like

 $-1,$p

 -7-

433

Ed (4) 28-Oct-80 Ed (4)

 which prints the last two lines of the buffer. This helps when
 we want to see how far we got in typing.

EXERCISE 3:
 As before, create some text using the append command and
 experiment with the "p" command. You will find, for example,
 that you can’t print line 0 or a line beyond the end of the
 buffer, and that attempts to print a buffer in reverse order by
 saying

 3,1p

 don’t work.

THE CURRENT LINE - ’Dot’ or ’.’
 Suppose our buffer still contains the six lines as above, that
 we have just typed

 1,3p

 and eeeddd has printed the three lines for us. Try typing just

 p (no line numbers).

 This will print

 to come to the aid of their party.

 which is the third line of the buffer. In fact it is the last
 (most recent) line that we have done anything with. (We just
 printed it!) We can repeat this "p" command without line
 numbers, and it will continue to print line 3.

 The reason is that eeeddd maintains a record of the last line that
 we did anything to (in this case, line 3, which we just printed)
 so that it can be used instead of an explicit line number. This
 most recent line is referred to by the shorthand symbol

 . (pronounced "dot").

 Dot is a line number in the same way that "$" is; it means
 exactly "the current line", or loosely, "the line we most
 recently did something to." We can use it in several ways - one
 possibility is to say

 .,$p

 This will print all the lines from (including) the current line
 to the end of the buffer. In our case these are lines 3 through
 6.

 -8-

434

Ed (4) 28-Oct-80 Ed (4)

 Some commands change the value of dot, while others do not. The
 print command sets dot to the number of the last line printed;
 by our last command, we would have "." = "$" = 6.

 Dot is most useful when used in combinations like this one:

 .+1 (or equivalently, .+1p)

 This means "print the next line" and gives us a handy way to
 step slowly through a buffer. We can also say

 .-1 (or .-1p)

 which means "print the line bbbeeefffooorrreee the current line." This
 enables us to go backwards if we wish. Another useful one is
 something like

 .-3,.-1p

 which prints the previous three lines.

 Don’t forget that all of these change the value of dot. You can
 find out what dot is at any time by typing

 .=

 EEEddd will respond by printing the value of dot.

 Let’s summarize some things about the "p" command and dot.
 Essentially "p" can be preceded by 0, 1, or 2 line numbers. If
 there is no line number given, it prints the "current line", the
 line that dot refers to. If there is one line number given
 (with or without the letter "p"), it prints that line (and dot
 is set there); and if there are two line numbers, it prints all
 the lines in that range (and sets dot to the last line printed.)
 If two line numbers are specified the first can’t be bigger than
 the second (see Exercise 3.)

 Typing a single newline will cause printing of the next line -
 it’s equivalent to ".+1p". Try it.

DELETING LINES: the ‘‘d’’ command
 Suppose we want to get rid of the three extra lines in the
 buffer. This is done by the dddeeellleeettteee command

 d

 Except that "d" deletes lines instead of printing them, its
 action is similar to that of "p". The lines to be deleted are
 specified for "d" exactly as they are for "p":

 -9-

435

Ed (4) 28-Oct-80 Ed (4)

 starting-line, ending-line d

 Thus the command

 4,$d

 deletes lines 4 through the end. There are now three lines
 left, as we can check by using

 1,$p

 And notice that "$" now is line 3! Dot is set to the next line
 after the last line deleted, unless the last line deleted is the
 last line in the buffer. In that case, dot is set to "$".

EXERCISE 4:
 Experiment with "a", "e", "r", "w", "p", and "d" until you are
 sure that you know what they do, and until you understand how
 dot, "$", and line numbers are used.

 If you are adventurous, try using line numbers with "a", "r",
 and "w" as well. You will find that "a" will append lines aaafffttteeerrr
 the line number that you specify (rather than after dot); that
 "r" reads a file in aaafffttteeerrr the line number you specify (not
 necessarily at the end of the buffer); and that "w" will write
 out exactly the lines you specify, not necessarily the whole
 buffer. These variations are sometimes handy. For instance you
 can insert a file at the beginning of a buffer by saying

 0r filename

 and you can enter lines at the beginning of the buffer by saying

 0a
 ...text...
 .

 Notice that ".w" is vvveeerrryyy different from

 .
 w

MODIFYING TEXT: the Substitute command ‘‘s’’
 We are now ready to try one of the most important of all
 commands - the substitute command

 s

 This is the command that is used to change individual words or

 -10-

436

Ed (4) 28-Oct-80 Ed (4)

 letters within a line or group of lines. It is what we use, for
 example, for correcting spelling mistakes and typing errors.

 Suppose that by a typing error, line 1 says

 Now is th time

 - the "e" has been left off "the". We can use "s" to fix this
 up as follows:

 1s/th/the/

 This says: "in line 1, substitute for the characters ‘th’ the
 characters ‘the’. To verify that it works (eeeddd will not print
 the result automatically) we say

 p

 and get

 Now is the time

 which is what we wanted. Notice that dot must have been set to
 the line where the substitution took place, since the "p"
 command printed that line. Dot is always set this way with the
 "s" command.

 The general way to use the substitute command is

 starting-line, ending-line s/change this/to this/

 Whatever string of characters is between the first pair of
 slashes is replaced by whatever is between the second pair, in
 aaallllll the lines between starting line and ending line. Only the
 first occurrence on each line is changed, however. If you want
 to change eeevvveeerrryyy occurrence, see Exercise 5. The rules for line
 numbers are the same as those for "p", except that dot is set to
 the last line changed. (But there is a trap for the unwary: if
 no substitution took place, dot is nnnooottt changed. This causes an
 error "?" as a warning.)

 Thus we can say

 1,$s/speling/spelling/

 and correct the first spelling mistake on each line in the
 text. (This is useful for people who are consistent
 misspellers!)

 If no line numbers are given, the "s" command assumes we mean

 -11-

437

Ed (4) 28-Oct-80 Ed (4)

 "make the substitution on line dot", so it changes things only
 on the current line. This leads to the very common sequence

 s/something/something else/p

 which makes some correction on the current line, and then prints
 it, to make sure it worked out right. If it didn’t, we can try
 again. (Notice that we put a print command on the same line as
 the substitute. With few exceptions, "p" can follow any
 command; no other multi-command lines are legal.)

 It’s also legal to say

 s/something//

 which means "change ’something’ to nnnooottthhhiiinnnggg,,,""" i.e., remove it.
 This is useful for deleting extra words in a line or removing
 extra letters from words. For instance, if we had

 Nowxx is the time

 we can say

 s/xx//p

 to get

 Now is the time

 Notice that "//" here means "no characters", not a blank. There
 iiisss a difference! (See below for another meaning of "//".)

EXERCISE 5:
 Experiment with the substitute command. See what happens if you
 substitute for some word on a line with several occurrences of
 that word. For example, do this:

 a
 the other side of the coin
 .
 s/the/on the/p

 You will get

 on the other side of the coin

 A substitute command changes only the first occurrence of the
 first string. You can change all occurrences by adding a "g"
 (for "global") to the "s" command, like this:

 -12-

438

Ed (4) 28-Oct-80 Ed (4)

 s/.../.../gp

 Try other characters instead of slashes to delimit the two sets
 of characters in the "s" command - anything should work except
 blanks or tabs.

 (If you get funny results using any of the characters

 % ? $ [*

 read the section on "Special Characters".)

CONTEXT SEARCHING - ‘‘/.../’’
 With the substitute command mastered, we can move on to another
 highly important idea of eeeddd - context searching.

 Suppose we have our original three line text in the buffer:

 Now is the time
 for all good men
 to come to the aid of their party.

 Suppose we want to find the line that contains "their" so we can
 change it to "the". Now with only three lines in the buffer,
 it’s pretty easy to keep track of what line the word "their" is
 on. But if the buffer contained several hundred lines, and we’d
 been making changes, deleting and rearranging lines, and so on,
 we would no longer really know what this line number would be.
 Context searching is simply a method of specifying the desired
 line, regardless of what its number is, by specifying some
 context on it.

 The way we say "search for a line that contains this particular
 string of characters" is to type

 /string of characters we want to find/

 For example, the eeeddd line

 /their/

 is a context search which is sufficient to find the desired line
 - it will locate the next occurrence of the characters between
 slashes ("their"). It also sets dot to that line and prints the
 line for verification:

 to come to the aid of their party.

 "Next occurrence" means that eeeddd starts looking for the string at
 line ".+1", searches to the end of the buffer, then continues at

 -13-

439

Ed (4) 28-Oct-80 Ed (4)

 line 1 and searches to line dot. (That is, the search "wraps
 around" from "$" to 1.) It scans all the lines in the buffer
 until it either finds the desired line or gets back to dot
 again. If the given string of characters can’t be found in any
 line, eeeddd types the error message

 ?

 Otherwise it prints the line it found.

 We can do both the search for the desired line aaannnddd a
 substitution all at once, like this:

 /their/s/their/the/p

 which will yield

 to come to the aid of the party.

 There were three parts to that last command: context search for
 the desired line, make the substitution, print the line.

 The expression "/their/" is a context search expression. In
 their simplest form, all context search expressions are like
 this - a string of characters surrounded by slashes. Context
 searches are interchangeable with line numbers, so they can be
 used by themselves to find and print a desired line, or as line
 numbers for some other command, like "s". We used them both
 ways in the examples above.

 Suppose the buffer contains the three familiar lines

 Now is the time
 for all good men
 to come to the aid of their party.

 Then the eeeddd line numbers

 /Now/+1
 /good/
 /party/-1

 are all context search expressions, and they all refer to the
 same line (line 2). To make a change in line 2, we could say

 /Now/+1s/good/bad/

 or

 /good/s/good/bad/

 -14-

440

Ed (4) 28-Oct-80 Ed (4)

 or

 /party/-1s/good/bad/

 The choice is dictated only by convenience. We could print all
 three lines by, for instance

 /Now/,/party/p

 or

 /Now/,/Now/+2p

 or by any number of similar combinations. The first one of
 these might be better if we don’t know how many lines are
 involved. (Of course, if there were only three lines in the
 buffer, we could use

 1,$p

 but not if there were several hundred.)

 The basic rule is: a context search expression is ttthhheee same as a
 line number, so it can be used wherever a line number is
 needed.

EXERCISE 6:
 Experiment with context searching. Try a body of text with
 several occurrences of the same string of characters, and scan
 through it using the same context search.

 Try using context searches as line numbers for the substitute,
 print and delete commands. (They can also be used with "r",
 "w", and "a".)

 Try context searching using "\text\" instead of "/text/". This
 scans lines in the buffer in reverse order rather than normal.
 This is sometimes useful if you go too far while looking for
 some string of characters - it’s an easy way to back up.

 (If you get funny results with any of the characters

 % ? $ [*

 read the section on "Special Characters".)

 EEEddd provides a shorthand for repeating a context search for the
 same string. For example, the eeeddd line number

 /string/

 -15-

441

Ed (4) 28-Oct-80 Ed (4)

 will find the next occurrence of "string". It often happens
 that this is not the desired line, so the search must be
 repeated. This can be done by typing merely

 //

 This shorthand stands for "the most recently used context search
 expression." It can also be used as the first string of the
 substitute command, as in

 /string1/s//string2/

 which will find the next occurrence of "string1" and replace it
 by "string2". This can save a lot of typing. Similarly

 \\

 means "scan backwards for the same expression."

CHANGE and INSERT - ‘‘c’’ and ‘‘i’’
 This section discusses the ccchhhaaannngggeee command

 c

 which is used to change or replace a group of one or more lines,
 and the iiinnnssseeerrrttt command

 i

 which is used for inserting a group of one or more lines.

 "Change", written as

 c

 is used to replace a number of lines with different lines, which
 are typed in at the terminal. For example, to change lines
 ".+1" through "$" to something else, type

 .+1,$c
 ...type the lines of text you want here...
 .

 The lines you type between the "c" command and the "." will take
 the place of the original lines between start line and end
 line. This is most useful in replacing a line or several lines
 which have errors in them.

 If only one line is specified in the "c" command, then just that
 line is replaced. (You can type in as many replacement lines as

 -16-

442

Ed (4) 28-Oct-80 Ed (4)

 you like.) Notice the use of "." to end the input - this works
 just like the "." in the append command and must appear by
 itself on a new line. If no line number is given, line dot is
 replaced. The value of dot is set to the last line you typed
 in.

 "Insert" is similar to append - for instance

 /string/i
 ...type the lines to be inserted here...
 .

 will insert the given text bbbeeefffooorrreee the next line that contains
 "string". The text between "i" and "." is iiinnnssseeerrrttteeeddd before the
 specified line. If no line number is specified dot is used.
 Dot is set to the last line inserted.

EXERCISE 7:
 "Change" is rather like a combination of delete followed by
 insert. Experiment to verify that

 start, end d
 i
 ...text...
 .

 is almost the same as

 start, end c
 ...text...
 .

 These are not ppprrreeeccciiissseeelllyyy the same if line "$" gets deleted.
 Check this out. What is dot?

 Experiment with "a" and "i", to see that they are similar, but
 not the same. You will observe that

 line-number a
 ...text..
 .

 appends aaafffttteeerrr the given line, while

 line-number i
 ...text...
 .

 inserts bbbeeefffooorrreee it. Observe that if no line number is given, "i"
 inserts before line dot, while "a" appends after line dot.

 -17-

443

Ed (4) 28-Oct-80 Ed (4)

BROWSING: the ‘‘b’’ command
 Many times you want to look at several lines of a large file
 while you’re using a video terminal. If you said

 1,$p

 the whole buffer would flash on the screen, usually too fast to
 read. A better way is the browse command "b". It prints just
 enough lines (23) to fill the CRT screen. Browse has three
 major forms which control what lines are displayed. "b" or "b+"
 prints the current line and the screen after it. "b." prints
 the screen centered on the current line and including it. "b-"
 prints the screenful before the current line.

MOVING TEXT AROUND: the ‘‘m’’ command
 The move command "m" is used for cutting and pasting - it lets
 you move a group of lines from one place to another on the
 buffer. Suppose we want to put the first three lines of the
 buffer at the end instead. We could do it by saying:

 1,3w temp
 $r temp
 1,3d

 (Do you see why?) but we can do it a lot easier with the "m"
 command:

 1,3m$

 The general case is

 start-line, end-line m after-this-line

 Notice that there is a third line to be specified - the place
 where the moved stuff gets put. Of course the lines to be moved
 can be specified by context searches; if we had

 First paragraph
 ...
 end of first paragraph.
 Second paragraph
 ...
 end of second paragraph.

 we could reverse the two paragraphs like this:

 /Second/,/second/m/First/-1

 Notice the "-1" - the moved text goes aaafffttteeerrr the line mentioned.

 -18-

444

Ed (4) 28-Oct-80 Ed (4)

 Dot gets set to the last line moved.

THE GLOBAL COMMAND ‘‘g’’
 The ggglllooobbbaaalll command "g" is used to execute an eeeddd command on all
 those lines in the buffer that match some specified string. For
 example

 g/peling/p

 prints all lines that contain "peling". More usefully,

 g/peling/s//pelling/gp

 makes the substitution everywhere on the line, then prints each
 corrected line. Compare this to

 1,$s/peling/pelling/gp

 which only prints the last line substituted. Another subtle
 difference is that the "g" command does not give a "?" if
 "peling" is not found where the "s" command will.

SPECIAL CHARACTERS
 You may have noticed that things just don’t work right when you
 used some characters like "?", "*", "$", and others in context
 searches and the substitute command. The reason is rather
 complex, although the cure is simple. Basically, eeeddd treats
 these characters as special, with special meanings. For
 instance, iiinnn a context search or the first string of the
 substitute command only,

 /x?y/

 means "a line with an x, aaannnyyy character, and a y," nnnooottt just "a
 line with an x, a question mark, and a y." A complete list of
 the special characters that can cause trouble is the following:

 % . $ [] * @ # ! + { }

 WWWaaarrrnnniiinnnggg::: The character @ is special to eeeddd... For safety’s sake,
 avoid it where possible. If you have to use one of the special
 characters in a substitute command, you can turn off its magic
 meaning temporarily by preceding it with the "at" sign. Thus

 s/@@?@*/at quest star/

 will change "@?*" into "at quest star".

 Here is a hurried synopsis of the other special characters.
 First, the percent "%" signifies the beginning of a line. Thus

 -19-

445

Ed (4) 28-Oct-80 Ed (4)

 /%string/

 finds "string" only if it is at the beginning of a line: it will
 find

 string

 but not

 the string...

 The dollar-sign "$" is just the opposite of the percent sign; it
 means the end of a line:

 /string$/

 will only find an occurrence of "string" that is at the end of
 some line. This implies, of course, that

 /%string$/

 will find only a line that contains just "string", and

 /%?$/

 finds a line containing exactly one character.

 The character "?", as we mentioned above, matches anything;

 /x?y/

 matches any of

 xay
 x1y
 x+y
 x-y
 x y
 x.y

 This is useful in conjunction with "*", which is a repetition
 character; "a*" is shorthand for "any number of a’s", so "?*"
 matches any number of anythings. This is used like this:

 s/?*/stuff/

 which changes an entire line, or

 s/?*,//

 -20-

446

Ed (4) 28-Oct-80 Ed (4)

 which deletes all characters in the line up to and including the
 last comma. (Since "?*" finds the longest possible match, this
 goes up to the last comma.)

 "[" is used with "]" to form "character classes"; for example,

 /[1234567890]/

 matches any single digit - any one of the characters inside the
 braces will cause a match.

 Finally, the "&" is another shorthand character - it is used
 only on the right-hand part of a substitute command where it
 means "whatever was matched on the left-hand side". It is used
 to save typing. Suppose the current line contained

 Now is the time

 and we wanted to put parentheses around it. We could just
 retype the line, but this is tedious. Or we could say

 s/%/(/
 s/$/)/

 using our knowledge of "%" and "$". But the easiest way uses
 the "&":

 s/?*/(&)/

 This says "match the whole line, and replace it by itself
 surrounded by parens." The "&" can be used several times in a
 line; consider using

 s/?*/&. &!!/

 to produce

 Now is the time. Now is the time!!

 We don’t have to match the whole line, of course: if the buffer
 contains

 the end of the world

 we could type

 /world/s//& is at hand/

 to produce

 -21-

447

Ed (4) 28-Oct-80 Ed (4)

 the end of the world is at hand

 Observe this expression carefully, for it illustrates how to
 take advantage of eeeddd to save typing. The string "/world/" found
 the desired line; the shorthand "//" found the same word in the
 line; and the "&" saved us from typing it again.

 The "&" is a special character only within the replacement text
 of a substitute command, and has no special meaning elsewhere.
 We can turn off the special meaning of "&" by preceding it with
 a "@":

 s/ampersand/@&/

 will convert the word "ampersand" into the literal symbol "&" in
 the current line.

ACKNOWLEDGEMENT
 The majority of this document has been taken, with the author’s
 permission, from "A Tutorial Introduction to the UNIX Text
 Editor" by B. W. Kernighan. It has been changed only to
 reflect the differences between this editor and the UNIX
 version.

SUMMARY OF COMMANDS AND LINE NUMBERS
 The general form of eeeddd commands is the command name, perhaps
 preceded by one or two line numbers, and, in the case of eee,,, rrr
 and www,,, followed by a file name. Only one command is allowed per
 line, but a ppp command may follow any other command (except for
 eee,,, rrr,,, www and qqq)))...

 aaa (append) Add lines to the buffer (at line dot, unless a
 different line is specified). Appending continues until "." is
 typed on a new line. Dot is set to the last line appended.

 bbb (browse) Display 23 lines of text, beginning at the current
 line. The current line will be centered if you use b. ("b
 dot"). Using b- will cause the previous 23 lines to be
 printed.

 ccc (change) Change the specified lines to the new text which
 follows. The new lines are terminated by a ".". If no lines
 are specified, replace line dot. Dot is set to last line
 changed.

 ddd (delete) Delete the lines specified. If none are specified,
 delete line dot. Dot is set to the first undeleted line, unless
 "$" is deleted, in which case dot is set to "$".

 eee (edit) Edit new file. Any previous contents of the buffer are

 -22-

448

Ed (4) 28-Oct-80 Ed (4)

 thrown away, so issue a www beforehand if you want to save them.

 fff (file) Print remembered filename. If a name follows fff the
 remembered name will be set to it.

 ggg (global) g/---/command will execute the command on those lines
 that contain "---", which can be any context search expression.

 iii (insert) Insert lines before specified line (or dot) until a
 "." is typed on a new line. Dot is set to last line inserted.

 mmm (move) Move lines specified to after the line named after mmm...
 Dot is set to the last line moved.

 ppp (print) Print specified lines. If none specified, print line
 dot. A single line number is equivalent to "line-number p". A
 single newline prints ".+1", the next line.

 qqq (quit) Exit from ed. Wipes out all text in buffer!!

 rrr (read) Read a file into buffer (at end unless specified
 elsewhere.) Dot set to last line read.

 sss (substitute) s/string1/string2/ will substitute the characters
 of ‘string2’ for ‘string1’ in specified lines. If no line is
 specified, make substitution in line dot. Dot is set to last
 line in which a substitution took place, which means that if no
 substitution took place, dot is not changed. sss changes only the
 first occurrence of string1 on a line; to change all of them,
 type a "g" after the final slash.

 www (write) Write out buffer onto a file. Dot is not changed.

 ...=== (dot value) Print value of dot. ("=" by itself prints the
 value of "$".)

 ///---------/// Context search. Search for next line which contains this
 string of characters. Print it. Dot is set to line where
 string found. Search starts at ".+1", wraps around from "$" to
 1, and continues to dot, if necessary.

 \---\ Context search in reverse direction. Start search at
 ".-1", scan to 1, wrap around to "$".

 -23-

449

Msg (4) 17-Mar-82 Msg (4)

NAME
 Msg - message editor

 MSG Primer

 Joseph Sventek
 Computer Science & Mathematics Department
 Lawrence Berkeley Laboratory
 Berkeley, CA 94720

msg is basically a message editor. It may be used to read, write and
modify files which have the message file format. There are two
default files of this type in your home directory:

 mymail - messages sent to you by others are deposited here.
 mbox - the messages in mymail are saved here, by default.

msg gives the user the power to create and manage other files for
conveniently sorting and categorizing messages received.

All commands to msg consist of a single character. msg then types
out the rest of the command name and, if necessary, prompts for
additional information needed to complete the request.

msg is entered via the following command line to the command
interpreter on your machine:

 msg [-p[n]] [filename]

If no filename is specified, msg defaults to the file mymail in the
home directory. msg first prints out a banner identifying itself;
then it reads the file specified (or mymail). If there are any
messages in the file, the headers for that file are automatically
displayed. Completing this, msg then prompts the user for a command
character with the string

 <-

The following symbols are used in the command descriptions below:

<RETURN> the character generated by hitting the RETURN or CR key
 <SPACE> the character generated by hitting the space bar
 <ESC> the character generated by hitting the ESC key
 ^C the character generated by holding down the CTRL key and
 hitting the key ‘C’

 -1-

450

Msg (4) 17-Mar-82 Msg (4)

There are only five types of input expected by msg:

 1. an msg command character
 2. a message sequence specification
 3. a filename
 4. a confirmation character (<SPACE>)
 5. an output continuation character (<SPACE>)

Whenever msg prompts for input, typing <ESC> causes the current
command to be aborted, and the user is returned to command level.

The following conventions are used in the command descriptions below:

<FILE-NAME>
 This stands for any valid file specification on your system. If
 the tools on your system support pathname to local-name
 translation, any valid pathname may also be used.

<MSG-SEQUENCE>
 This input is prompted for by the string "(message sequence)".
 Valid responses to this prompt are:

 1. Any single message number, as listed in the headers.
 2. Any two message numbers separated by ":" or "-". This
 specification describes a range of message numbers (e.g.
 2-5 means messages 2 and 3 and 4 and 5 in that order). If
 the first number is larger than the second, then the range
 is traversed in decreasing order. If the second message
 number is omitted, then the number of the last message in
 the current file is used.
 3. Any sequence of the previous two types separated by
 commas. For example,
 1,3,5-7,10
 means messages 1 and 3 and 5 through 7 and 10.
 <MSG-SEQUENCE> of the types described above are terminated
 by <RETURN>.
 4. Special types of message sequences, which are determined by
 the first character typed in response to the (message
 sequence) prompt.

 character
 typed action
 --------- ---

 <RETURN> The relevant process is performed on the current
 message

 a The string "all messages" is displayed and the
 relevant action is taken on all messages

 -2-

451

Msg (4) 17-Mar-82 Msg (4)

 c Identical to <RETURN>

 d The string "deleted messages" is displayed and
 the appropriate action is taken on those messages
 currently marked as deleted

 f The string "from string: " is displayed,
 prompting the user to supply a string to be used
 in a pattern match with the from fields of the
 headers. The characteristics of these strings
 are described below.

 s The string "subject string: " is displayed,
 prompting the user to supply a string to be used
 in a pattern match with the subject fields of the
 headers. See below for more information on the
 characteristics of these strings.

 u The string "undeleted messages" is displayed and
 the relevant action is taken on those messages
 currently not deleted

The strings required for the from and subject search are the same
regular expressions used by the editor, find and change. Those
manual entries may be consulted for more information. The string
must be terminated by a <RETURN>. If a bare <RETURN> is typed in
response to the string prompt, no searching is done and the command
is terminated.

Whenever msg prompts for a string which must be terminated by a
<RETURN> (message sequences, from or subject search strings or a
filename), character editing may be performed as follows:

 1. DEL(RUB) or BACKSPACE(^H) will delete the last character.
 2. ^U will delete the entire string typed so far.
 3. ^R will cause the current string to be retyped on the next line
 of the terminal. This is handy for users with hardcopy
 terminals, as character deletions and replacements will result
 in overprinted paper, and ^R can be used to see exactly what has
 been typed.

Since msg is a tool, both its standard input and standard output may
be redirected to disk files. In particular, that is how the writeups
for each individual command below was obtained, through the use of
the online help facility, as well as the example dialogue described
below. It should be noted that if the standard output is redirected
to a file but standard input is not, none of the prompts or output of
the commands typed will be seen by the user.

When operating in interactive mode, all output to the user’s terminal

 -3-

452

Msg (4) 17-Mar-82 Msg (4)

is paged - i.e. after a screenful is displayed, the user is prompted
to see if more output is desired. Positive responses to this prompt
("[type SPACE to continue]") is a <SPACE>. Any other response
results in the following actions:

 1. If msg was typing a large message, it will stop displaying the
 current message. If there are more messages to be typed in the
 current command, msg will then ask if the next message is
 desired. A negative response to this prompt ("[type SPACE for
 next message]") results in the discontinuation of the current
 command and a return to command level ("<-").
 2. If the ? or h[eaders] command generates more than a screenful of
 lines, the user will be prompted. A negative response will
 result in the discontinuation of the current command.

The default page size is 22 lines. This may be modified by using the
‘-p[n]’ switch in the arguments to msg. If n is specified, then the
page size is reset to that value. Simply typing -p with no trailing
number turns paging off. !!!BEWARE!!! If you turn off paging
altogether, and give a command which generates a lot of output (i.e.
t[ype] a[ll messages]), there is no way to stop msg until it is
done. A better approach is to set n very large (say 1000 or so), so
that header listings and entire messages will not be paged, but msg
will stop after each message when typing multiple message sequences.

 -4-

453

Msg (4) 17-Mar-82 Msg (4)

The banner that msg greets the user with is:

 Software Tools MSG System
 type ? for help
 type # for news
 type % for intro

Typing ? to the prompt results in the following information:

 <- ? MSG Help

 The following commands are recognized by msg:
 a[nswer] message
 b[ackup] to previous message and type it
 c[urrent] message number and file
 d[elete] message(s)
 e[xit] and update old file
 f[orward] message
 g[o to] message specified and print it
 h[eaders] print headers of message(s)
 i[nformation] on command displayed
 j[ump] into shell - return by typing logout to shell
 k[ey] encryption-key *** UNIMPLEMENTED ***
 l[ist] message(s) in print format on file
 m[ove] message(s) to another mail file and mark them deleted
 n[ext] message is typed
 o[verwrite] current file and re-read
 p[ut] copies of message(s) in another mail file
 q[uit] leave MSG without updating current file
 r[ead] in another mail file
 s[ndmsg] invoke SNDMSG to send a message (and return to MSG)
 t[ype] message(s) on standard output
 u[ndelete] message(s)
 #[news] print MSG news
 ?[help] print this list
 %[intro] type an introduction to MSG (for first-time users)
 For more information, use the i[nformation] command.

Listed are the valid commands to msg. Those which are defined but
unimplemented are noted as such. Expanded information for each
command may be had through the use of the i[nformation] command.

 -5-

454

Msg (4) 17-Mar-82 Msg (4)

Typing # results in the following display:

 <- # MSG News
 No news is good news!

As modifications are made to the system, entries will be placed in
msg’s database such that the news command will inform the user of
recent changes.

Typing % results in the following display:

 <- % Introduction to MSG
 If you are a new MSG user, you probably need ONLY the following commands:

 t type message(s) on terminal; common options are ‘a’ for all
 messages or ‘<n>’ (where <n> is an integer) for message <n>.

 d delete a message after reading it; common options as above.

 e exit MSG and move messages which have not been deleted to your
 mail file (‘mbox’ in your home directory).

 q quit MSG without updating your mail file; if there are any
 messages left, you will be notified when you next login (or
 the next time you run ‘postmn’).

 NOTE: These command characters should NOT be followed by a RETURN. When
 you type one of them, MSG will immediately prompt you for more
 input.

 To print a copy of the MSG primer on the lineprinter, type

 sh -c "msgprim | lpr"

This synopsis is meant for first time users, to help them in their
efforts to use msg.

 -6-

455

Msg (4) 17-Mar-82 Msg (4)

The following is a list of the online documentation available for
each of the supported commands. The general format of the output of
the i[nformation] command is:

 1. A line which shows how the terminal will look when the command
 is used.
 2. A full description of what the command does, what inputs it
 expects, and references to other commands with similar
 functionality.

 <- information - type command character: a

 Answer message number: <NUMBER>

 This command causes sndmsg to be spawned as a sub-process, with the
 To field being the sender of the indicated message, and the subject
 field consisting of the string "Re: <SUBJECT>", where <SUBJECT> is
 replaced by the subject of the indicated message. In addition, the
 message header of the answering message will contain the line

 "In-reply-to: Your message of <DATE>"

 where <DATE> is replaced by the date of the indicated message.
 The user will be prompted for Cc addresses and the message to be sent.

 <- information - type command character: b

 Backing up - previous message is:

 This command displays the previous message (i.e. current message - 1).
 It is the inverse of the Next command. The current message number is
 decremented. If the current message number is 1 when Backup is invoked,
 an error message is displayed.

 <- information - type command character: c

 Current message is nn of mm messages in file <FILE-NAME>

 This command displays:
 1. the number of the current message
 2. the total number of messages in the message file
 3. the file name of the currently active message file

 -7-

456

 Msg (4) 17-Mar-82 Msg (4)

 <- information - type command character: d

 Delete (message sequence) <MSG-SEQUENCE>

 This command marks the messages specified in MSG-SEQUENCE as deleted,
 as indicated by an asterisk following the message number in the headers
 of the affected messages. The actual messages in the message file are
 not affected unless an Overwrite, Exit or Write command is executed
 before leaving MSG.

 <- information - type command character: e

 Exit and update old file <FILE-NAME> [type SPACE to confirm]

 This command overwrites the current message file, but permits the user
 to leave MSG rather than re-reading the message file as Overwrite does.

 <- information - type command character: f

 Forward message number: <NUMBER>

 This command causes sndmsg to be spawned as a sub-process, with the
 message consisting of the header and message body of the indicated
 message. The user will be prompted for To, Cc and Subject fields
 upon entry into sndmsg.

 <- information - type command character: g

 Go to message number: <NUMBER>

 This command permits explicit changing of the current message number.
 If <NUMBER> is not in the range of acceptable values (i.e. it is less
 than 1 or greater than the number of messages in the file), an error
 message is displayed and the current message number will remain
 unchanged. Legal inputs for <NUMBER> are:
 1. a number in the range 1 <= n <= NMSGS
 2. f for the first message (message number 1)
 3. l for the last message
 4. <CARRIAGE-RETURN> for the current message number (a noop)

 <- information - type command character: h

 Headers (message sequence) <MSG-SEQUENCE>

 This command displays the headers for the messages defined by the
 specified message sequence. Headers corresponding to deleted

 -8-

457

 Msg (4) 17-Mar-82 Msg (4)

 messages have an asterisk printed after the message number for that
 particular message. The format for the headers is:

 <msg-no> <size in characters> <date> <from> <subject>

 The headers are displayed a screenful at a time. After a screenful
 has been output, if there are more headers remaining to be displayed,
 the user is prompted with the string "[type SPACE to continue]".
 A response of SPACE will cause the next screenful to be displayed.
 Any other response terminates the listing of the headers.

 <- information - type command character: i

 Information - type command character: <COMMAND-CHARACTER>

 This command displays full help information for those commands listed
 by the ? command.

 <- information - type command character: j

 Jump into shell [type SPACE to confirm]

 This command drops the user into the Software Tools shell. All
 normal commands may be executed while in the shell. Control returns
 to MSG by typing logout to the shell.

 <- information - type command character: l

 List (message sequence) <MSG-SEQUENCE>
 on file name: <FILE-NAME>

 This command lists all the specified messages on the file specified
 (overwriting the current contents of <FILE-NAME>. A preface page,
 consisting of a FORMFEED character and the headers of the selected
 messages is output first, followed by each message preceded by a
 FORMFEED character. The file output by List can be disposed to a
 printer using the lpr shell command, resulting in a message on each
 page of the output.

 <- information - type command character: m

 Move (message sequence) <MSG-SEQUENCE>
 into file name: <FILE-NAME>

 This command is a convenient combination of the Put and Delete commands.
 It will first put the selected messages into the file specified and then

 -9-

458

 Msg (4) 17-Mar-82 Msg (4)

 mark the messages as deleted in the header information.

 <- information - type command character: n

 Next message is:

 This command displays the next message (current message number + 1)
 and increments the current message number. If the current message is
 already the last one, an error message is displayed and the current
 message number remains unchanged.

 <- information - type command character: o

 Overwrite old file <FILE-NAME> [type SPACE to confirm]

 This command will overwrite the current file (specified by <FILE-NAME>),
 eliminating any deleted messages. It then re-reads the file, re-numbering
 the messages.

 <- information - type command character: p

 Put (message sequence) <MSG-SEQUENCE>
 into file name: <FILE-NAME>

 This command will put the messages specified by <MSG-SEQUENCE> into
 the file specified by <FILE-NAME>. If the file does not exist, it
 will create the file and write the messages into it. If the file
 already exists, the messages are appended to those already in the
 file.

 <- information - type command character: q

 Quit [type SPACE to confirm]

 This command allows the user to leave MSG without modifying the
 current message file.

 <- information - type command character: r

 Read file name: <FILE-NAME>

 This command allows the user to use MSG on files created by previous
 Move or Put invocations. The current message file is closed with no
 modification, and the file specified is read, displaying the headers
 before prompting for the next command.

 -10-

459

 Msg (4) 17-Mar-82 Msg (4)

 <- information - type command character: s

 Sndmsg [type SPACE to confirm]

 This command causes SNDMSG to be spawned as a sub-process, allowing the
 user to send a message without leaving MSG; when SNDMSG exits, MSG
 regains control with no changed to files, etc.

 <- information - type command character: t

 Type (message sequence) <MSG-SEQUENCE>

 This command displays the messages specified. If more than one message
 is specified, the user is prompted with "[type SPACE for next message]"
 after each message. In addition, if a particular message is
 larger than one screenful, the user is prompted after each screenful.
 A negative response to this latter prompt results in the termination of
 the display of the particular message, while a negative response to the
 former results in termination of the Type command.

 <- information - type command character: u

 Undelete (message sequence) <MSG-SEQUENCE>

 This command undoes the actions of the Delete command.

 -11-

460

 Msg (4) 17-Mar-82 Msg (4)

 The following is a sample dialogue using many of the msg commands.
 The characters typed by the user are underlined, with the token <CR>
 standing for typing <RETURN>.

 % _m_s_g_t_e_s_t _>_t_e_s_t_._m_s_g_; _m_s_g _t_e_s_t_._m_s_g_<_C_R_>

 Software Tools MSG System
 type ? for help
 type # for news

 1 114 25-MAR-80 Tools another test of mail
 2 323 27-MAR-80 Tools still more tests
 3 289 27-MAR-80 Tools testing
 4 114 01-APR-80 Tools test of the mail system
 5 330 03-APR-80 System A TEST OF THE MAIL SYSTEM
 6 116 09-APR-80 Tools a test of the mail system
 7 308 09-APR-80 Tools more testing
 8 99 09-APR-80 Tools another test
 9 145 09-APR-80 Tools why doesn’t mail work?
 10 129 10-APR-80 Tools more testing
 11 298 10-APR-80 Tools more testing
 12 326 10-APR-80 Tools Yet another test
 13 129 10-APR-80 Sventek sventek’s test
 14 314 10-APR-80 Tools testing again

 <- _headers (message sequence) _1_,_2_,_4_-_6_<_C_R_>
 1 114 25-MAR-80 Tools another test of mail
 2 323 27-MAR-80 Tools still more tests
 4 114 01-APR-80 Tools test of the mail system
 5 330 03-APR-80 System A TEST OF THE MAIL SYSTEM
 6 116 09-APR-80 Tools a test of the mail system

 <- _type (message sequence) _subject string: _s_v_e_n_t_e_k_<_C_R_>

 (message 13, 129 characters)
 Date: 10-APR-80 10:43:02 - PST
 From: Sventek
 Subject: sventek’s test
 To: sventek, tools, system

 sure hope this works

 <- _put (message sequence) _subject string: _m_a_i_l_<_C_R_>
 into file name: _n_t_e_s_t_._m_s_g_<_C_R_>
 <- _delete (message sequence) _from string: _s_y_s_t_e_m_<_C_R_>
 <- _type (message sequence) _deleted messages

 -12-

461

 Msg (4) 17-Mar-82 Msg (4)

 (message 5, 330 characters)
 Date: 03-APR-80 11:35:09 - PST
 From: System
 Subject: A TEST OF THE MAIL SYSTEM
 To: allen, austin, bargmeyer, benson, gey, guest, heckman, helena,
 hogan, holmes, kreps, merrill, oracle, robinson, rtsg, scherrer,
 shoshani, sventek, sventekv, system, tabata, tape, tools

 THIS IS ANOTHER TEST. SORRY FOR THE INCONVENIENCE.

 <- _overwrite old file ’test.msg’ [type SPACE to confirm] _<_S_P_A_C_E_>
 updating...
 1 114 25-MAR-80 Tools another test of mail
 2 323 27-MAR-80 Tools still more tests
 3 289 27-MAR-80 Tools testing
 4 114 01-APR-80 Tools test of the mail system
 5 116 09-APR-80 Tools a test of the mail system
 6 308 09-APR-80 Tools more testing
 7 99 09-APR-80 Tools another test
 8 145 09-APR-80 Tools why doesn’t mail work?
 9 129 10-APR-80 Tools more testing
 10 298 10-APR-80 Tools more testing
 11 326 10-APR-80 Tools Yet another test
 12 129 10-APR-80 Sventek sventek’s test
 13 314 10-APR-80 Tools testing again

 <- _move (message sequence) _1_-_5_<_C_R_>
 into file name: _o_l_d_._m_s_g_<_C_R_>
 <- _go to message number: _first
 (message 1, 114 characters)
 Date: 25-MAR-80 12:46:23 - PST
 From: Tools
 Subject: another test of mail
 To: tools

 sure hope this works again.

 <- _current message is 1 of 13 messages in file ’test.msg’
 <- _next message is:
 (message 2, 323 characters)
 Date: 27-MAR-80 15:08:32 - PST
 From: Tools
 Subject: still more tests
 To: allen, austin, bargmeyer, benson, gey, guest, heckman, helena,
 hogan, holmes, kreps, merrill, oracle, robinson, rtsg,
 scherrer, shoshani, sventek, sventekv, system, tabata, tape,
 tools

 -13-

462

 Msg (4) 17-Mar-82 Msg (4)

 another test message

 <- _go to message number: _last
 (message 13, 314 characters)
 Date: 10-APR-80 14:53:19 - PST
 From: Tools
 Subject: testing again
 To: allen, austin, bargmeyer, benson, gey, guest, heckman, helena,
 hogan, holmes, kreps, merrill, oracle, robinson, rtsg,
 scherrer, shoshani, sventek, sventekv, system, tabata, tape,
 tools

 will it never stop?

 <- _current message is 13 of 13 messages in file ’test.msg’
 <- _backing up - previous message is:
 (message 12, 129 characters)
 Date: 10-APR-80 10:43:02 - PST
 From: Sventek
 Subject: sventek’s test
 To: sventek, tools, system

 sure hope this works

 <- _jump into shell [type SPACE to confirm] _<_S_P_A_C_E_>
 % _l_o_g_o_u_t_<_C_R_>

 <- _? MSG Help

 The following commands are recognized by msg:
 a[nswer] message
 b[ackup] to previous message and type it
 c[urrent] message number and file
 d[elete] message(s)
 e[xit] and update old file
 f[orward] message
 g[o to] message specified and print it
 h[eaders] print headers of message(s)
 i[nformation] on command displayed
 j[ump] into shell - return by typing logout to shell
 k[ey] encryption-key *** UNIMPLEMENTED ***
 l[ist] message(s) in print format on file
 m[ove] message(s) to another mail file and mark them deleted
 n[ext] message is typed
 o[verwrite] current file and re-read
 p[ut] copies of message(s) in another mail file
 q[uit] leave MSG without updating current file
 r[ead] in another mail file

 -14-

463

 Msg (4) 17-Mar-82 Msg (4)

 s[ndmsg] invoke SNDMSG to send a message (and return to MSG)
 t[ype] message(s) on standard output
 u[ndelete] message(s)
 #[news] print MSG news
 ?[help] print this list
 %[intro] type an introduction to MSG (for first-time users)
 For more information, use the i[nformation] command.

 <- _# MSG News
 No news is good news!

 <- _information - type command character: _r

 Read file name: <FILE-NAME>

 This command allows the user to use MSG on files created by previous
 Move or Put invocations. The current message file is closed with no
 modification, and the file specified is read, displaying the headers
 before prompting for the next command.

 <- _headers (message sequence) _all messages
 1* 114 25-MAR-80 Tools another test of mail
 2* 323 27-MAR-80 Tools still more tests
 3* 289 27-MAR-80 Tools testing
 4* 114 01-APR-80 Tools test of the mail system
 5* 116 09-APR-80 Tools a test of the mail system
 6 308 09-APR-80 Tools more testing
 7 99 09-APR-80 Tools another test
 8 145 09-APR-80 Tools why doesn’t mail work?
 9 129 10-APR-80 Tools more testing
 10 298 10-APR-80 Tools more testing
 11 326 10-APR-80 Tools Yet another test
 12 129 10-APR-80 Sventek sventek’s test
 13 314 10-APR-80 Tools testing again

 <- _list (message sequence) _from string: _t_o_o_l_s_<_C_R_>
 on file name: _t_o_o_l_s_._l_s_t_<_C_R_>
 <- _undelete (message sequence) _deleted messages
 <- _move (message sequence) _from string: _s_v_e_n_t_e_k_<_C_R_>
 into file name: _s_v_e_n_t_e_k_._m_s_g_<_C_R_>
 <- _current message is 12 of 13 messages in file ’test.msg’
 <- _headers (message sequence) _undeleted messages
 1 114 25-MAR-80 Tools another test of mail
 2 323 27-MAR-80 Tools still more tests
 3 289 27-MAR-80 Tools testing
 4 114 01-APR-80 Tools test of the mail system
 5 116 09-APR-80 Tools a test of the mail system
 6 308 09-APR-80 Tools more testing
 7 99 09-APR-80 Tools another test

 -15-

464

 Msg (4) 17-Mar-82 Msg (4)

 8 145 09-APR-80 Tools why doesn’t mail work?
 9 129 10-APR-80 Tools more testing
 10 298 10-APR-80 Tools more testing
 11 326 10-APR-80 Tools Yet another test
 13 314 10-APR-80 Tools testing again

 <- _overwrite old file ’test.msg’ [type SPACE to confirm] _<_S_P_A_C_E_>
 updating...
 1 114 25-MAR-80 Tools another test of mail
 2 323 27-MAR-80 Tools still more tests
 3 289 27-MAR-80 Tools testing
 4 114 01-APR-80 Tools test of the mail system
 5 116 09-APR-80 Tools a test of the mail system
 6 308 09-APR-80 Tools more testing
 7 99 09-APR-80 Tools another test
 8 145 09-APR-80 Tools why doesn’t mail work?
 9 129 10-APR-80 Tools more testing
 10 298 10-APR-80 Tools more testing
 11 326 10-APR-80 Tools Yet another test
 12 314 10-APR-80 Tools testing again

 <- _read file name: _n_t_e_s_t_._m_s_g_<_C_R_> reading...
 1 114 25-MAR-80 Tools another test of mail
 2 114 01-APR-80 Tools test of the mail system
 3 330 03-APR-80 System A TEST OF THE MAIL SYSTEM
 4 116 09-APR-80 Tools a test of the mail system
 5 145 09-APR-80 Tools why doesn’t mail work?

 <- _quit [type SPACE to confirm] _<_S_P_A_C_E_>

 -16-

465

Ratfor (4) 4-Apr-78 Ratfor (4)

NAME
 Ratfor - rational FORTRAN pre-processor

 RATFOR PRIMER

Ratfor is a preprocessor for Fortran. Its primary purpose is to
encourage readable and well-structured code while taking
advantage of the universality, portability, and efficiency of
Fortran. This is done by providing the control structures not
available in bare Fortran, and by improving the "cosmetics" of
the language.

Ratfor allows for all the features of normal Fortran, plus makes
available these control structures:

 "if"-"else"
 "while", "for", and "repeat"-"until" for looping
 "switch" for multi-way branching
 "break" and "next" for controlling loop exits
 statement grouping with braces

The cosmetic aspects of Ratfor have been designed to make it
concise and reasonably pleasing to the eye:

 free form input
 unobtrusive comment convention
 translation of >, <=, etc. into .GT., .LE., etc.
 string data type
 quoted character strings
 character constants
 "define" statement for symbolic constants
 conditional preprocessing
 "include" statement for including source files

Ratfor is implemented as a preprocessor which translates the
above features into Fortran, which can then be fed into almost
any Fortran compiler.

Each of the Ratfor features will now be discussed in more
detail. In the following, a "statement" is any legal statement
in Fortran: assignment, declaration, subroutine call, I/O, etc.,
or any of the Ratfor statements themselves. Any Fortran or
Ratfor statement or group of these can be enclosed in braces
({}) or brackets ([]) -- to make it a compound statement, which
is then equivalent to a single statement and usable anywhere a
single statement can be used.

 -1-

466

Ratfor (4) 4-Apr-78 Ratfor (4)

 IF-ELSE

Ratfor provides an "if-else" statement to handle the
construction "if a condition is true, do this thing, otherwise
do that thing". The syntax is

 if (legal Fortran condition)
 statement(s)
 else
 statement(s)

where the else part is optional. The "legal Fortran condition"
is anything that can legally go into a Fortran logical IF. The
Ratfor statements may be one or more valid Ratfor or Fortran
statements of any kind. If more than one statement is desired,
the statements must be enclosed by braces. For example,

 if (a > b)
 {
 k = 1
 call remark (...)
 }
 else if (a < b)
 {
 k = 2
 call remark (...)
 }
 else
 return

 -2-

467

Ratfor (4) 4-Apr-78 Ratfor (4)

 WHILE

Ratfor provides a while statement, which is simply a loop:
"while some condition is true, repeat this group of
statements". The syntax is

 while (legal Fortran condition)
 statement(s)

As with the if, "legal Fortran condition" is something that can
go into a Fortran logical IF. The condition is tested before
execution of any of the Ratfor statements, so if the condition
is not met, the loop will be executed zero times. Also, as with
the IF, the Ratfor statements can be any valid Ratfor or Fortran
constructs. If more than one statement is desired, the
statements must be enclosed by braces. For example,

 while (getc(c) != EOF)
 {
 c = cnvt (c)
 call putc (c)
 }

 -3-

468

Ratfor (4) 4-Apr-78 Ratfor (4)

 FOR

The "for" statement is similar to the "while" except that it
allows explicit initialization and increment steps as part of
the statement. The syntax is

 for (init; condition; increment)
 statement(s)

where "init" is any single Fortran statement which gets done
once before the loop begins. "Increment" is any single Fortran
statement which gets done at the end of each pass through the
loop, before the test. "Condition" is again anything that is
legal in a logical IF. Any of init, condition, and increment
may be omitted, although the semicolons must remain. A
non-existent condition is treated as always true, so "for(; ;
)" is an indefinite repeat. The "for" statement is particularly
useful for backward loops, chaining along lists, loops that
might be done zero times, and similar things which are hard to
express with a DO statement. Here are two examples of "for"
loops:

 for (i=1; getarg(i, file, MAXLINE) != EOF; i=i+1)
 {
 int = open (file, READ)
 while (getlin (line, int) != EOF)
 {
 for (j=80; j>0; j=j-1)
 call putc (line(j))
 }
 call close (int)
 }

The above code simply reads cards from a list of files, reverses
the order of the characters, and writes the cards onto a
standard output file. (The "!=" means .NE.)

Groups of Fortran statements may be used in the "init" and
"increment" clauses by separating the statements with commas
(,). For example:

 for (i=1, j=1; buf(i) != EOS; i=i+2, j=j+1)
 out(j) = buf(i)

copies every other character in buf into consecutive locations
in out.

 -4-

469

Ratfor (4) 4-Apr-78 Ratfor (4)

 REPEAT-UNTIL

The "repeat-until" statements allow for repetition of a group of
statements until a specified condition is met. The syntax is:

 repeat
 statement(s)
 until (condition)

The "until" is optional. Once again, if more than one Ratfor
statement is desired, the statements must be enclosed by
brackets. If the "until" part is omitted, the result is an
infinite loop which must be broken with a "break" or "next"
statement (see below). An example of a repeat-until loop is:

 repeat
 {
 call putc (’ ’)
 col = col + 1
 }
 until (tabpos(col,tabs) == YES)

 -5-

470

Ratfor (4) 4-Apr-78 Ratfor (4)

 SWITCH

The "switch" statement permits the execution of multi-way
branches. The syntax is:

 switch (expression)
 {
 case constant[,constant]*: statement(s)
 case constant[,constant]*: statement(s)
 .
 .
 .
 case constant[,constant]*: statement(s)
 default: statement(s)
 }

‘expression’ must result in an integer or character value, which
is then compared with the ‘constant’s enumerated in the
statement block. Unlike the ‘switch’ statement in the C
programming language, there is an implied break after each
case. If more than one Ratfor statement is desired for each
case, the statements must be enclosed in brackets.

It is possible to exit from a group of statements in the scope
of a case label through the use of a break statement (see
below). An example of the use of switch is:

 switch (ngetch(c, fd))
 {
 case ’a’,’q’: x = 5
 case ’b’,’c’: x = 10
 case EOF: {
 call remark("Error in input.")
 call putbak(EOF)
 }
 default: x = 0
 }

 -6-

471

Ratfor (4) 4-Apr-78 Ratfor (4)

 BREAK and NEXT

Ratfor provides statements for leaving a loop early and for
beginning the next iteration.

"Break" causes an immediate exit from whatever loop it is
contained in (which may be a "while", "for", "repeat" or
"switch"). Control resumes with the next statement after the
loop. Only one loop is terminated by a "break", even if the
"break" is contained inside several nested loops. For example:

 repeat
 {
 if (getc(c) == EOF)
 break
 ...
 }

"Next" is a branch to the bottom of the loop, so it causes the
next iteration to be done. "Next" goes to the condition part of
a "while" or "until", to the top of an infinite "repeat" loop,
and to the reinitialize part of a "for". For example:

 for (i=1; i<10; i=i+1)
 {
 if (array(i) == ’ ’)
 next
 ...
 }

Breaking out of multiple loops can be achieved by specifying the
number of levels to break out of after the break statement, as
in:

 repeat
 {
 repeat
 {
 if (condition)
 break 2
 line 2
 }
 line 1
 }
 line 0

Upon execution of the "break 2" statement, execution resumes at
"line 0". It is probably better to use a "goto" statement when
breaking out of multiple loops, since that should be a little

 -7-

472

Ratfor (4) 4-Apr-78 Ratfor (4)

easier to maintain and understand.

 -8-

473

Ratfor (4) 4-Apr-78 Ratfor (4)

 STATEMENT GROUPING AND NULL STATEMENTS

Ratfor allows a group of statements to be treated as a unit by
enclosing them in braces -- { and }. This is true throughout
the language: wherever a single Ratfor statement can be used,
there could also be several enclosed in braces. For example:

 if (x > 100)
 {
 call error (...)
 err = 1
 return
 }

If braces are not valid characters in the local operating
system, the characters "[" and "]" may be used instead of "{"
and "}" respectively.

Ratfor also allows for null statements, most useful after "for"
and "while" statements. A semicolon alone indicates a null
statement. For instance,

 while (getlin(line, int) != EOF)
 ;

would read lines from a file until the end-of-file was reached
and

 for (i=1; line(i) == ’ ’; i=i+1)
 ;

positions after leading blanks in a line.

 -9-

474

Ratfor (4) 4-Apr-78 Ratfor (4)

 FREE-FORM INPUT

Statements may be placed anywhere on a line and several may
appear on one line if they are separated by semicolons. No
semicolon is needed at the end of each line because Ratfor
assumes there is one statement per line unless told otherwise.
Ratfor will, however, continue lines when it seems obvious that
they are not yet done.

Any statement that begins with an all-numeric field is assumed
to be a Fortran label and is placed in columns 1-5 upon output.

Statements may be passed through the Ratfor compiler unaltered
by inserting a percent sign (%) as the first character on the
line. The percent will be removed, the rest of the line shifted
one position to the left, and the line sent out without any
changes. This is a convenient way to pass regular Fortran or
assembly code through the ratfor compiler.

Sequences of characters may be passed through the pre-processor
unaltered by surrounding them with the tokens %(...%). This
proves useful if it is necessary to interact with other
system-specific software which uses RATFOR keywords or special
characters. For example:

 call graph_label(%(’X-Axis’%), %(’Y-Axis’%))

permits the subroutine graph_label to be called with F77
character strings as the labels. Using the %(...%) construct
prevents RATFOR from trying to interpret the F77 strings as
character constants.

 -10-

475

Ratfor (4) 4-Apr-78 Ratfor (4)

 COMMENTS

A sharp character "#" in a line marks the beginning of a comment
and the rest of the line is considered to be that comment.
Comments and code can co-exist on the same line. For example,

 function dummy (x)

 # I made up this function to show some comments

 dummy = x #I am simply returning the parameter

 return
 end

 -11-

476

Ratfor (4) 4-Apr-78 Ratfor (4)

 CHARACTER TRANSLATION

Sometimes the characters >, <=, etc. are easier to read in
Fortran condition statements than the standard Fortran .EQ.,
.LT., etc.. Ratfor allows either convention. If the special
characters are used, they are translated in the following
manner:

 == .EQ.
 != ^= ˜= .NE.
 < .LT.
 > .GT.
 <= .LE.
 >= .GE.
 | .OR.
 & .AND.
 ! .NOT.

For example,

 for (i=1; i<= 5; i=i+1)
 ...

 if (j != 100)
 ...

 -12-

477

Ratfor (4) 4-Apr-78 Ratfor (4)

 STRING DATA TYPE

All character arrays in Ratfor are sequences of ASCII
characters, stored right-adjusted, one per array element, with
the string terminated with an EOS marker. An automatic way to
initialize string characters arrays is provided. The syntax is:

 string name "characters"
or
 string name(n) "characters"

Ratfor will define name to be a character (or, more likely,
integer) array long enough to accomodate the ASCII codes for the
given character string, one per element. The last word of name
is initialized to EOS. If a size is given, name is declared to
be an integer array of size ’n’. If several string statements
appear consecutively, the generated declarations for the array
will precede the data statements that initialize them.

For example, the declarations:

 string errmsg "error"
 string done "bye"

would be converted by ratfor into the Fortran:

 integer error(6)
 integer done(4)
 data error(1), error(2), error(3), error(4),
 error(5), error(6) /’e’, ’r’, ’r’, ’o’, ’r’, EOS/
 data done(1), done(2), done(3), done(4) /’d’, ’o’,
 ’n’, ’e’, EOS/

The standard escape characters used in the text processing utilities
(find, ch, ed, etc.) can be used inside of a string. In particular,
to embed an atsign (’@’) or a double quote (’"’) into the string,
they must be escaped, as in:

 string escape "Embed quote (@")"

 -13-

478

Ratfor (4) 4-Apr-78 Ratfor (4)

 QUOTED CHARACTER STRINGS

Text enclosed in matching double quotes is converted to an
appropriate declaration for a ‘character’ array, and the
appropriate data statements to load this array are output. The
variable name will be of the form STNNNZ, where NNN is replaced
by a rotating sequence number. The array will be declared long
enough to place the value EOS in the last element, as for the
‘string’ declaration. Since these declarations and data
statements are output immediately, the resulting FORTRAN code
must be run through the program ‘ratp2’, which will reorder the
code to be ANSI-66 compliant.

String literals can be continued across line boundaries by
ending the line to be continued with an underline. The
underline is not part of the string, nor are any leading blanks
or tabs on the next line.

The normal escape sequences are permitted in quoted strings. In
particular, if a quote is to be embedded in the string, it must
be escaped, as in

 "a quote (@") in a string"

 -14-

479

Ratfor (4) 4-Apr-78 Ratfor (4)

 CHARACTER LITERALS

Character constants of the form ’c’ are converted to the decimal
integer representation of that character in the ASCII character
set. For example:

 call putc(’!’)
becomes
 call putc(33)

The standard escape sequences for characters (as used in find,
ch and ed) are interpreted within the apostrophes. In
particular, ’@n’ is NEWLINE, ’@t’ is TAB and ’@@’ is ATSIGN.
Consult the writeup on the find utility for the complete set of
escaped characters.

Note that this usage pre-empts the use of apostrophes to delimit
character strings.

 -15-

480

Ratfor (4) 4-Apr-78 Ratfor (4)

 DEFINE

Any string of alphanumeric characters can be defined as a name:
thereafter, whenever that name occurs in the input (delimited by
non-alphanumerics) it is replaced by the rest of the definition
line. The syntax is:

 define(name, replacement string)

which define "name" as a macro which will be replaced with
"replacement string" when encountered in the source files. As a
simple example:

 define(ROW,10)
 define(COLUMN,25)

 dimension array (ROW, COLUMN)
and

 define(EOF,-1)
 if (getlin(line, fd) == EOF)
 ...

Definitions may be included anywhere in the code, as long as
they appear before the defined name occurs. The names of macro
may contain letters, digits, and underline characters, but must
start with a letter. Upper and lower cases ARE significant
(thus EOF is not the same as eof).

Any occurrences of the strings ’$n’ in the replacement text,
where 1 <= n <= 9, will be replaced with the nth argument when
the macro is actually invoked. For example:

 define(bump, $1 = $1 + 1)

will cause the source line

 bump(i)

to be expanded into

 i = i + 1

In addition to define, several other built-in macros are
provided:

 -16-

481

Ratfor (4) 4-Apr-78 Ratfor (4)

 arith(x,op,y) performs the "integer" arithmetic specified by
 op (+,-,*,/,**) on the two numeric operands and
 returns the result as its replacement.
 incr(x) converts the string x to a number, adds one to
 it, and returns the value as its replacement
 (as a character string).
 ifelse(a,b,c,d) compares a and b as character strings; if they
 are the same, c is pushed back onto the input,
 else d is pushed back.
 substr(s,m,n) produces the substring of s which starts at
 position m (with origin one), of length n. If
 n is omitted or too big, the rest of the string
 is used, while if m is out of range the result
 is a null string.
lentok(str) pushes the length of the argument (# of
 characters) onto the input as a character
 string.
undefine(sym) removes the definition for the symbol ‘sym’, if
 it is defined.

 -17-

482

Ratfor (4) 4-Apr-78 Ratfor (4)

 CONDITIONAL PREPROCESSING

Ratfor source code may be conditionally preprocessed, dependent
upon the definition (or lack thereof) of a symbol. The syntax
is

 ifdef(symbol) ifnotdef(symbol)
 . .
 . .
 . .
 elsedef elsedef
 . .
 . .
 . .
 enddef enddef

Conditionals may be nested to some maximum level (usually 10).
An example of their use might be an output routine which forces
the output of a characters from a string to uppercase, depending
upon the definition of a symbol DO_UPPER:

 for (i = 1; buf(i) != EOS; i = i + 1)
 {
 ifdef (DO_UPPER)
 call putc(cupper(buf(i))
 elsedef
 call putc(buf(i))
 enddef
 }

 -18-

483

Ratfor (4) 4-Apr-78 Ratfor (4)

 INCLUDE

Files may be inserted into the input stream via the "include"
command. The statement

 include filename
or
 include "filename"

inserts the file found on input file "filename" into the Ratfor
input in place of the include statement. (Surrounding the
filename with quotes is required if the filename contains
characters other than letters, digits and underscores.) This is
especially useful in inserting common blocks. For example,

 function exampl (x)

 include comblk

 exampl = x + z

 return
 end

might translate into

 function exampl (x)

 common /comblk/ q, r, z

 exampl = x + z

 return
 end

 -19-

484

Ratfor (4) 4-Apr-78 Ratfor (4)

 IMPLEMENTATION

Ratfor was originally written in C, a high-level language, on
the Unix operating system. Our version is written in Ratfor
itself, originally brought up by a bootstrap written in
Fortran.

Ratfor generates code by reading input files and translating any
Ratfor keywords into standard Fortran. Thus, if the first token
(word) on a source line is not a keyword (like "for", "while",
etc.) the entire statement is simply copied to the output with
appropriate character translation and formatting. Ratfor knows
very little Fortran and thus does not handle any Fortran error
detection. Errors in Ratfor keyword syntax are generally noted
by a message to the user’s terminal along with an indication of
the source line number which caused the problem.

 CONCLUSIONS

Ratfor demonstrates that with modest effort Fortran-based
programmers can increase their productivity by using a language
that provides them with the control structures and cosmetic
features essential for structured programming design. Debugging
and subsequent revision times are much faster than the
equivalent efforts in Fortran, mainly because the code can be
easily read. Thus it becomes easier to write code that is
readable, reliable, and even esthetically pleasing, as well as
being portable to other environments.

 -20-

485

Ratfor (4) 4-Apr-78 Ratfor (4)

 EXAMPLE

The following is a sample Ratfor tool designed to show some of
the commonly-used Ratfor commands. The routine reads through a
list of files, counting the lines as it goes.

 # This is an example of a routine written in Ratfor
 # Symbols such as EOF, ERR, MAXLINE, character and filedes are
 # automatically defined (i.e. a file containing them is included)
 # by the preprocessor

 ## count - counts lines in files
 DRIVER(count)

 include comblk # this file contains a common block which
 # contains a variable "linect"

 character file(FILENAMESIZE), line(MAXLINE)
 integer i
 filedes fd
 integer getarg, open, getlin
 string total "total lines: "

 call query ("usage: count file.")
 linect = 0

 # loop through the list of files

 for (i=1; getarg(i, file, FILENAMESIZE) != EOF; i=i+1)
 {
 fd = open (file, READ) # open (attach) the file
 if (fd == ERR) # file could not be located
 call cant (file)
 while (getlin(line, fd) != EOF) # read and count lines
 linect = linect + 1
 call close (fd) # close (unattach) the file
 }

 call putlin(total, STDOUT)
 call putint (linect, 1, STDOUT)
 call putch (’@n’, STDOUT)

 DRETURN
 end

 -21-

486

Ratfor (4) 4-Apr-78 Ratfor (4)

 SEE ALSO

1) Kernighan, Brian W., "Ratfor--a Preprocessor for a Rational
Fortran". Software - Practice and Experience, Vol. 5, 4
(Oct-Dec 75), pp. 395-406.

2) Kernighan, Brian W. and P. J. Plauger, "Software Tools".
Addison-Wesley Publishing Company, Reading, Mass., 1976.

3) The ratfor user document

4) The Unix command "rc" in the Unix Manual (RC(I))

 -22-

487

488

	Software Tools Manuals
	ReadMes and Release Notes
	README.0TH
	README.1ST
	Release Notes

	Manual Pages
	Intro
	Section 1 - Utilities
	Intro
	Acat
	Admin
	Alist
	Bookmark
	Apropos
	Ar
	Args
	Asam
	Asplit
	Axref
	Banner
	BarGraph
	Box
	Cat
	Ccnt
	Ch
	Chmod
	Chown
	Cmp
	Comm
	Cp
	Cpress
	Cron
	Crt
	Crypt
	D
	Date
	Dc
	Delta
	Detab
	Diff
	E
	Echo
	Ed
	Entab
	Esh
	Exist
	Expand
	Fb
	Fc
	Fd
	Field
	Find
	Form
	Format
	Get
	Grep
	Hsh
	Incl
	Isam
	Kill
	Kwic
	Lsm
	Lcnt
	Ld
	ll
	Lpr
	Ls
	Macro
	Man
	Mcol
	Mkdir
	Mv
	Number
	Os
	Pack
	Pl
	Pr
	Printf
	Prlabl
	Ps
	Pstat
	Pwd
	Rar
	Rat77
	Ratfor
	Ratp1
	Ratp2
	Rc
	Resume
	Rev
	Rm
	Ruler
	Sched
	Sedit
	Send
	Sepfor
	Sh
	Sleep
	Sort
	Spell
	Split
	Suspnd
	Tail
	Tee
	Timer
	Tr
	Tsort
	Ttt
	Txtrpl
	Ul
	Uniq
	Unrot
	Wc
	Wcnt
	Whereis
	Who
	Xch
	Xfind
	Xref

	Section 2 - System Calls
	Intro
	Amove
	Assign
	Brdcst
	Chmod
	Closdr
	Close
	Create
	Ctoptr
	Cwdir
	Delarg
	Enbint
	Endst
	Filnfo
	Gdraux
	Gdrprm
	Getarg
	Getch
	Getdir
	Getlin
	Getnow
	Gettyp
	Gtmode
	Gtzone
	Gwdir
	Homdir
	Initst
	Intsrv
	Isatty
	Loccom
	Mailid
	Mklocl
	Mkpath
	Note
	Open
	Opendr
	Prompt
	Ptrcpy
	Ptreq
	Ptrtoc
	Putch
	PutLin
	Readf
	Remark
	Remove
	Scratf
	Seek
	Sleep
	Spawn
	Bookmark
	Stmode
	Symbols
	Trmlst
	Writef

	Section 3 - Library Routines
	Acopy
	Adddi
	Addset
	Addstr
	Adrfil
	Agetch
	Agethd
	Agtlin
	Alldig
	Amatch
	Aopen
	Argtab
	Askip
	Badarg
	Bubble
	Cant
	Catsub
	Chcopy
	Clower
	Bookmark
	Concat
	Ctoc
	Ctodi
	Ctoi
	Cupper
	Decrdi
	Delete
	Disize
	Ditoc
	Dopack
	Dsdecl
	Dsfree
	Dsget
	Dsinit
	Dstime
	Entdef
	Enter
	Equal
	Error
	Esc
	Exppth
	Fcopy
	Flpack
	Fmtdat
	Fold
	Fsize
	Fskip
	Getc
	Getpat
	Getsub
	Getwrd
	Gitocf
	Gtftok
	Gtword
	Imget
	Iminit
	Impath
	Imput
	Imrset
	Imsort
	Imuniq
	Incrdi
	Index
	Indexs
	Inihlp
	Initdi
	Inpack
	Itoc
	Length
	Logpmt
	Lookup
	Ludef
	Makpat
	Maksub
	Match
	Mktabl
	Mrkhlp
	Ngetch
	Bookmark
	Pbdecl
	Pbinit
	Pbstr
	Putbak
	Putc
	Putdec
	Puthlp
	Putint
	Putlnl
	Putptr
	Putstr
	Query
	Rmdef
	Rmtabl
	Scopy
	Sctabl
	Sdrop
	Sdupl
	Settab
	Shell
	Skipbl
	Stake
	Stcopy
	Stlu
	Strcmp
	Strcpy
	Strim
	Subdi
	Tabpos
	Tbinit
	Tbinst
	Tblock
	Tooldr
	Type
	Upper
	Wkday

	Section 4 - Primers
	Ed
	Msg
	Ratfor

